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Speech and other natural vocalizations are characterized by large modulations in their sound envelope. The timing of these modulations
contains critical information for discrimination of important features, such as phonemes. We studied how depression of synaptic inputs,
a mechanism frequently reported in cortex, can contribute to the encoding of envelope dynamics. Using a nonlinear stimulus-response
model that accounted for synaptic depression, we predicted responses of neurons in ferret primary auditory cortex (A1) to stimuli with
natural temporal modulations. The depression model consistently performed better than linear and second-order models previously
used to characterize A1 neurons, and it produced more biologically plausible fits. To test how synaptic depression can contribute to
temporal stimulus integration, we used nonparametric maximum a posteriori decoding to compare the ability of neurons showing and
not showing depression to reconstruct the stimulus envelope. Neurons showing evidence for depression reconstructed stimuli over a
longer range of latencies. These findings suggest that variation in depression across the cortical population supports a rich code for
representing the temporal dynamics of natural sounds.

Introduction
Substantial information about natural sounds is contained in
their envelope (i.e., changes in sound level over time). Correctly
perceiving speech requires accumulating information about en-
velope dynamics over periods ranging from tens of milliseconds,
in the case of phonemes (Mesgarani et al., 2008), to many sec-
onds, in the case of sentences (Shannon et al., 1995). Cochlear
implant patients rely on these envelope cues for speech percep-
tion (Won et al., 2011), and deficits in temporal processing have
been linked to impaired language comprehension (Wright et al.,
2000). Thus, integration of stimulus dynamics over time repre-
sents an essential component of auditory perception (Penner and
Shiffrin, 1980).

Studies of primary auditory cortex (A1) have identified an
influence of sound history on neural responses lasting many hun-
dreds of milliseconds that could reflect neural strategies for tem-
poral integration (Brosch and Schreiner, 1997; Ulanovsky et al.,
2004; Asari and Zador, 2009). However, the mechanisms
underlying representations on these timescales, particularly for
continually varying natural sounds, remain largely unknown. Ac-
cordingly, current computational models of neural processing
cannot account for these phenomena. Response latency and du-

ration measured using spectrotemporal models are generally
�100 ms in A1 (Kowalski et al., 1996). The limited ability of these
models to predict neural responses to natural vocalizations and
other stimuli may reflect, in part, their failure to explain temporal
integration over longer periods (Machens et al., 2004; David et
al., 2009).

In this study, we tested whether synaptic depression, a de-
crease in presynaptic efficacy from prolonged neurotransmitter
release, can account for longer integration times in A1. Synaptic
depression is widespread across cortical synapses (Tsodyks and
Markram, 1997). Theoretical work has suggested that it may play
a role in spatiotemporal integration in the visual system (Chance
et al., 1998; Carandini et al., 2002) and a more general computa-
tional role in neural circuits (Buonomano and Maass, 2009). We
hypothesized that the degree of depression in a neuron’s inputs
provides information about stimulus history that can be read out
by observing the effect of depression on the response to the cur-
rent stimulus.

We recorded the activity of single neurons in A1 of awake
ferrets while presenting a noise stimulus that contained the enve-
lope dynamics of natural vocalizations. We then compared the
ability of a model that incorporated nonlinear synaptic depres-
sion to explain neural responses to the vocalization-modulated
noise against linear (Theunissen et al., 2001; David et al., 2009)
and second-order Volterra models (Brenner et al., 2000; Pien-
kowski et al., 2009) previously used to study representation in A1.
The synaptic depression model revealed a biologically plausible
diversity of depression effects across neurons and consistently
predicted spiking activity as well or better than the other models.
Additionally, we found that responses of neurons showing evi-
dence for synaptic depression encoded information about the
stimulus envelope over a longer period into the past than the
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responses of nondepression neurons. These results are consistent
with the hypothesis that feedforward synaptic depression permits
auditory cortex to integrate information about natural stimulus
dynamics over hundreds of milliseconds.

Materials and Methods
Spiking activity was recorded from a total of 352 single units in primary
auditory cortex (A1) of five awake, passively listening female ferrets. All
experimental procedures were approved by the University of Maryland
Animal Care and Use Committee and conformed to standards specified
by the National Institutes of Health.

Experimental procedure
Surgical preparation. Animals were implanted with a steel head post to
allow for stable recording. While under anesthesia (ketamine followed by
isoflurane) and under sterile conditions, the skin and muscles on the top
of the head were retracted from the central 4 cm diameter of skull. Several
stainless steel bone screws were attached to the skull, a custom steel post
was glued on the midline, and the site was covered with bone cement.
After surgery, the skin around the implant was allowed to heal. Analgesics
and antibiotics were administered under veterinary supervision until
recovery.

Neurophysiological recordings. After animals fully recovered from sur-
gery and were habituated to a head-fixed posture, a small craniotomy
(1–2 mm diameter) was opened over A1. Single-unit activity was re-
corded using tungsten microelectrodes (1–5 M�, FHC). One to four
electrodes positioned by independent microdrives were inserted into the
cortex, and electrophysiological activity was recorded using a commer-
cial data acquisition system (Alpha-Omega). Raw signals were digitized
and bandpass filtered between 300 and 6000 Hz.

Spiking events were extracted from the continuous electrophysiolog-
ical signal using principal components analysis and k-means clustering
(David et al., 2007). Single-unit isolation was quantified from cluster
variance and overlap as the fraction of spikes that were likely to be from
a single cell rather than from another cell. Only neurons with �80%
isolation were used for analysis. Increasing the threshold for isolation to
95% reduced the number of units but produced all the same trends
observed in the data reported here. Neurons were verified as being in A1
according to by their tonotopic organization, latency, and frequency
tuning (Kowalski et al., 1996).

Stimulus presentation was controlled by custom software written in
MATLAB (MathWorks). Digital acoustic signals were transformed to
analog (National Instruments), equalized to achieve flat gain (Rane),
amplified (Rane), and attenuated (Hewlitt Packard) to the desired sound
level. Stimuli were presented monaurally through an earphone (Ety-
motic Research) contralateral to the neurophysiological recording site.
Before each experiment, the equalizer was calibrated according to the
acoustic properties of the earphone insertion.

Acoustic stimuli
Temporally orthogonal ripple combinations (TORCs). Neural best fre-
quency and tuning bandwidth were initially characterized with rippled
noise stimuli that allowed rapid, efficient estimation of linear spectro-
temporal response functions (STRFs) (Klein et al., 2000). Each TORC set
was composed of 30 3-s rippled noise combinations, each of which sam-
pled a narrow range of spectral modulations, spanning a range of 5 oc-
taves (125– 4000 Hz, 250 – 800 Hz or 500 –16,000 Hz) with spectral
resolution 0 –1.4 cycles/octave and temporal resolution 4 – 48 cycles/s.
Typically, two to five repetitions of the TORCs were required for stable
STRF estimates.

Vocalization-modulated noise. One experimental limitation to explor-
ing the neural representation of natural sounds is that a complete model
of auditory tuning involves many parameters, requiring prohibitively
large neurophysiological datasets for fitting (David and Gallant, 2005).
To focus on nonlinear temporal integration, we developed a new stimu-
lus with simple spectral structure (bandpass noise), modulated by a tem-
poral envelope from natural vocalizations (see Fig. 1, example). This
stimulus permitted fitting models with only a single spectral dimension,
maximizing statistical power available to characterize nonlinear tempo-

ral processing while activating the system under naturalistic conditions
(Garcia-Lazaro et al., 2006).

Vocalization-modulated noise was generated by first extracting the
envelope from a recording of continuous human speech or ferret vocal-
izations. Envelopes from both classes of vocalization had similar 1/f sta-
tistics, and we did not observe systematic differences between neurons
characterized with either stimulus. The envelope was then applied to
bandpass noise that matched the excitatory bandwidth of the neuron
within one-half octave, determined from the STRF estimated using
TORCs (David et al., 2009). Variants of this stimulus, covering the entire
bandwidth of the STRF or even broadband across many octaves, are
possible, but in this study we elected to focus on the temporal dynamics
of the excitatory frequency band. During each experiment, neural activ-
ity was recorded using 4 – 6 repetitions of 30 – 40 3-s stimuli. For about
half of the auditory-responsive cells (n � 179), a second dataset was
collected, using 20 repetitions of two additional 3-s stimuli to allow for
more exact measurement of prediction accuracy.

Temporal response function analysis
General predictive models are a powerful tool for studying how the brain
represents and extracts information from complex natural stimuli (Wu
et al., 2006; David et al., 2009). However, the effectiveness of this ap-
proach, especially for complex nonlinear models, has been limited by
problems of dimensionality. Very general models that make few assump-
tions about mechanism tend to require a large number of parameters. To
evaluate more complex nonlinear models of temporal processing, we
simplified the problem by removing spectral variations from the stimu-
lus and thus reducing its dimensionality. This approach allowed us to
probe a wide range of nonlinear temporal models that can subsequently
be tested in a more general stimulus context.

Linear temporal response function. The linear model used in this study
is a simplification of the STRF commonly used to study auditory brain
systems (Eggermont, 1993; Kowalski et al., 1996; deCharms et al., 1998;
Klein et al., 2000; Theunissen et al., 2001; David et al., 2009). Because the
vocalization-modulated noise stimulus was modulated uniformly across
frequency bands, neural responses could be described by their temporal
response function (TRF), simply a function of time. For a stimulus with
a time-varying envelope, s(t), t � 1…T, and neuron with instantaneous
firing rate, r(t), the linear TRF is defined as the filter h(u), such that,

r�t� � h0 � �
u�0

U

h�u�s�t � u� (1)

Each coefficient of h indicates the weight applied to the stimulus enve-
lope at time lag u � 1…U before summing. Baseline response, h0, cap-
tures the spontaneous firing rate in the absence of a stimulus. Positive
values indicate components of the stimulus correlated with increased
firing, and negative values indicate components correlated with de-
creased firing (see Fig. 2 examples).

Second-order temporal response function. This model was a second-
order Volterra series generalization from the linear TRF, which accounts
for multiplicative interactions between stimuli at different time lags (Eg-
germont, 1993; Pienkowski et al., 2009). The model is a generalization of
the linear TRF, in that the first term is identical to that of Equation 1, as
follows:

r�t� � h0 � �
u1�0

U

h1�u1�s�t � u1� � �
u1�0

U �
u2�0

U

h2�u1,u2�

� s�t � u1�s�t � u2� (2)

Thus, h1(u1) represents the same weights as the linear TRF, and h2(u1,u2)
indicates the weight applied to the product of the stimulus at lags u1

and u2.
Synaptic depression temporal response function. The synaptic depres-

sion TRF was explicitly designed to capture the nonlinear dynamics
caused by depression of synaptic inputs to the neuron being character-
ized (Tsodyks et al., 1998). This model assumed that depression at a given
synapse could be explained by two parameters, the rate of vesicle deple-
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tion per presynaptic action potential, v, and the time constant of vesicle
recovery, �. If presynaptic activity is proportional to the stimulus, s(t),
then the level of depression at the synapse is as follows:

d�t� � d�t � 1� � s�t � 1��1 � d�t � 1��v �
d�t � 1�

�
(3)

bounded at d � 0 … 1, and the “depressed” stimulus effectively reaching
the postsynaptic neuron is the original stimulus scaled down by the cur-
rent level of depression, as follows:

sd�t� � s�t��1 � d�t�� (4)

To incorporate depression into the TRF framework, we used the nonlin-
early transformed stimulus, sd(t), as the input to a linear filter.

Modeling synaptic depression requires the selecting parameter values
(v,�) in addition to the weights of the linear filter. Rather than estimating
the depression parameters explicitly, which like much nonlinear regres-
sion is subject to instability, we applied the “kernel trick” to our model
(Eichhorn et al., 2004). We modeled the inputs to each TRF as a bank of
i � 1…N synapses, each with different depression dynamics (vi,� i). We
then projected the stimulus, sd(t,i), through this bank of filters to produce
an overcomplete multichannel expansion of the stimulus, with different
nonlinear depression characteristics for each input channel. The depres-
sion TRF is then a linear filter applied to the depressed stimulus, as
follows:

r�t� � h0 � �
i�1

N �
u�0

U

hd�u,i�sd�t � u,i� (5)

In this representation, the only parameters that needed to be estimated
were the linear filter parameters, hd(u,i), associated with each synapse
(see Fig. 2 examples). At the same time that it prevents numerical insta-
bility, this approach allows neurons to be characterized by multiple
synapses with different depression characteristics. The TRF can assign
non-zero weights to as many synapses as required to best explain the fit
data.

For this study, we used a bank of 12 depressing synapses plus a single
nondepressing synapse. Depression strength ranged over three possible
values, v � 	0.5,1.5,2.5
/max�s� dB SPL�1 (where the units of s(t) are dB
SPL) and recovery time constants ranged over four possible values,
� � 	20,80,200,400
 ms, making a set of 3 � 4 � 12 depression param-
eter combinations. A simple physiological interpretation of the units of
depression strength is difficult, as the original model is based on synaptic
vesicle pool size and other parameters that cannot be measured extracel-
lularly (Tsodyks et al., 1998). Normalizing depression strength by the
maximum of the stimulus envelope produced consistent performance
across neurons and correct units for the model in Equation 3. We tested
a larger range of depression strengths (up to 5.0 dB SPL �1) and recovery
time constants (up to 2000 ms) and found that TRF fits rarely took
advantage of the larger parameter values. Instead, the larger range of
parameters produced a slight decrease in TRF predictive power, presum-
ably resulting from model overfitting. This does not rule out the possi-
bility that some A1 neurons might indeed undergo depression with
greater strength and time constants, but on average, the functional prop-
erties of the population tested in our awake ferret preparation falls in the
regimen used here.

The slow recovery dynamics specified by the analytical form of the
depression TRF permits a longer memory than the linear and second-
order TRFs, which cannot account for stimulus influence at time lags
greater than U time bins. To control for the effects of simply increasing
temporal integration time in a linear model, we approximated the effects
of synaptic depression using a bank of linear, exponentially decaying
filters,

sl�t,i� � �
u�0



s�t � u� exp�� u/�i�, (6)

with variable time constants �i � 	5,10,20,40,80,160,320,640
 ms. The
filtered stimulus, sl(t,i) was then input to a linear filter with the same form

as the depression TRF in Equation 5. For large �i, this transformation had
the effect of low-pass filtering and making stimulus information hun-
dreds of milliseconds before the current time available to a linear filter
without requiring a larger maximum time lag, which can worsen fitting
noise (see below).

Data preprocessing. For each neuron, all of the models defined above
were estimated using the same dataset. Before TRF estimation, data re-
corded from a neuron were divided into separate estimation and valida-
tion segments. To avoid bias from overfitting (especially because the
different models contained different numbers of parameters), all model
parameters were estimated using the estimation segment and subse-
quently tested with the validation segment. For neurons presented the 6 s,
20-repeat stimulus, these data were reserved for validation. For the re-
maining neurons, 7.5% of the total dataset was reserved for validation.
Because the 20-repeat data collected for many neurons represented a
subset of the data especially designed for prediction noise ceiling calcu-
lation (Sahani and Linden, 2003), we elected not to perform a full cross-
validation procedure in which separate TRFs were estimated after
excluding different validation datasets. A full cross-validation procedure
should produce slightly more accurate models but would be unlikely to
change the results dramatically (David et al., 2007).

Stimulus and response data were binned at 5 ms, and maximum time
lag, U, was set to 100 ms for all analyses, except controls that explicitly
varied these values. The stimulus envelope was measured by full-wave
rectifying the stimulus waveform, interpolating between local maxima,
smoothing to the temporal bin size of the TRF, and applying log com-
pression. Neural responses were computed as the instantaneous firing
rate in each time bin, averaged across trials.

Model estimation by boosting. For all models, TRF parameters were
estimated by boosting or coordinate descent (David et al., 2007, 2009).
Previously, in the context of auditory STRF analysis, boosting has been
used only to estimate linear models. Both the second-order and depres-
sion TRF models can be cast as linear models if the appropriate nonlinear
transformation is applied to the stimulus before fitting a linear filter
(Eichhorn et al., 2004). Thus, after nonlinear projection into the appro-
priate space (second-order stimulus outer product and synaptic depres-
sion filter bank, respectively), we could use the same boosting algorithm
to estimate TRFs for all three models. We confirmed that boosting accu-
rately recovers the temporal filter properties of simulated neurons that
undergo and do not undergo synaptic depression (see Fig. 2). After fitting
all TRFs, a static rectification nonlinearity was fit to the TRF output to
account for spike threshold (David et al., 2009).

Model validation. Each TRF was evaluated based on its ability to pre-
dict the time-varying peristimulus time histogram (PSTH) response in
the reserved validation dataset. Prediction accuracy was measured as the
correlation coefficient (Pearson’s r) between the predicted and observed
PSTH, binned at 5 ms (David et al., 2007). Because some error resulted
from uncertainty in the observed PSTH due to finite stimulus repetitions,
we also measured prediction accuracy after correcting for this sampling
limitation (Sahani and Linden, 2003). This correction improved predic-
tion scores but had no influence on the relative performance of the dif-
ferent models.

Maximum a posteriori reconstruction
Stimulus reconstruction provides a tool for measuring stimulus informa-
tion encoded by a population of sensory neurons (Bialek et al., 1991;
Mesgarani et al., 2009). Most previous reconstruction methods applied
to complex natural sensory data have used linear decoding because of its
robustness and tractability. However, to characterize stimulus informa-
tion that was not explicitly available to a linear decoder, we used a model-
free, maximum a posteriori method. The neural representation was
modeled using a population rate code in that neural firing rates measured
over a relatively long time window (100 ms) were used to reconstruct the
stimulus envelope with finer temporal resolution (5 ms).

The reconstruction procedure was designed to determine the most
likely stimulus, s(t � �), at time lag, �, from the response of N neurons at
time t, r(t) � [r1(t) r2(t) … rN(t)] and knowledge of the stimulus prior
probability. For the purpose of the probability analysis, the stimulus and
response at each time point are binned at discrete levels. According to
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Bayes’ theorem, the probability of a stimulus, s(t � �), given the response,
r(t), can then be written as follows:

P�s�t � ���r�t�� �
P�r�t��s�t � ��� P�s�t � ���

P�r�t��
(7)

If we make the simplifying assumption that neural responses are inde-
pendent, then,

P�s�t � ���r�t�� � �
i�1

N
P�ri�t��s�t � ��� P�s�t � ���

P�r�t��
(8)

and most likely stimulus is

SML�t � �� � argmax �
i�1

N

P�ri�t��s�t � ��� P�s�t � ��� (9)

Because the marginal, P(r), is independent of s, the denominator of
Equation 8 drops out of the maximum computation. Finding the most
likely stimulus then simply requires finding the peak of the one-
dimensional distribution in Equation 9.

For stimulus reconstruction, we focused on the subset of neurons that
had been presented stimuli with identical auditory envelopes (n � 258).
To test whether neurons showing evidence for synaptic depression en-
coded stimuli with longer memory, we selected the 57 neurons from this
subset that showed a significant improvement in prediction power for
the synaptic depression TRF over the linear TRF ( p � 0.05, jackknifed t
test). We compared the accuracy of reconstructions by this group to
those by an equal-sized group with the same average prediction accuracy
but no difference between depression and linear TRFs. For reconstruc-
tions from simulated responses, we used the TRF estimates for those
groups of neurons to predict responses to the stimulus (Eqs. 1 and 5,
respectively, for linear and depression TRFs). The identical reconstruc-
tion analysis was then performed using the simulated responses.

Data preprocessing. The stimulus envelope was binned at 5 ms and
discretized into 20 uniform sound levels. The response of each neuron at
each time was computed by averaging the spike rate over the preceding
100 ms time window and discretizing into 7 uniform bins. Then at each
moment in time, a vector composed of the neural population spike rate
was used to reconstruct the preceding stimulus envelope on a 5 ms time-
scale. We experimented with different response windows (10 –200 ms)
and discretization schemes. Changing these parameters slightly dimin-
ished differences in the reconstruction between depression and nonde-
pression subpopulations but overall produced the same effects.

Reconstruction validation. Reconstructions were performed using 20-
time jackknifing, in which 95% of the data were used for estimating
response probabilities, P(ri�s), and the decoding was performed on the
remaining 5%. Reconstruction accuracy was measured as the normalized
mean square error between actual and reconstructed stimulus. Signifi-
cant reconstruction accuracy was evaluated using a jackknifed t test.

We also fit a linear decoder (Bialek et al., 1991; Mesgarani et al., 2009)
using the same data and observed similar trends, but performance was
worse at longer time lags for both groups of neurons. Thus, some of the
long-latency information is not encoded in a form explicitly available to
linear decoders.

Results
A diversity of temporal response dynamics in A1
We recorded the activity of 352 single units in A1 of awake, pas-
sively listening ferrets during presentation of vocalization-
modulated noise (Fig. 1A). The noise stimulus was constructed
by applying the temporal envelope of continuous speech or ferret
vocalizations to bandpass noise matched to each neuron’s pre-
ferred frequency. Because spectral energy changed coherently
within the stimulus noiseband, the stimulus probed the cortical
representation of stimuli with complex, naturalistic temporal dy-

namics but could also be described as a relatively simple one-
dimensional function of time (Fig. 1B).

In A1, neural responses to the vocalization-modulated noise
were generally robust and reliable over repeated trials. The dy-
namics of the peri-stimulus time histogram (PSTH) response,
however, varied substantially across neurons (Fig. 1C). Some
neurons closely followed the stimulus envelope over the entire 3 s
noise segment (Fig. 1C, bottom). Other neurons tended to re-
spond only to the onset of each syllable (Fig. 1C, middle), whereas
others responded strongly only to the onset of each 3 s stimulus
epoch (Fig. 1C, top). Because the stimulus noiseband was
matched to the excitatory tuning of each neuron, the differences
between PSTHs reflect variability in the neurons’ temporal re-
sponse properties.

Modeling synaptic depression during temporal processing
To determine the source of the variability in PSTHs among neu-
rons, we estimated the temporal response function (TRF) for
each neuron, which describes the relationship between the stim-
ulus envelope and the time-varying neural response. Classically,
functional characterization of auditory neurons has used the lin-
ear STRF, which finds the best linear weighted sum of stimulus
spectral channels and time lags to predict the instantaneous neu-
ronal firing rate (Eggermont, 1993; Kowalski et al., 1996; deC-
harms et al., 1998; Klein et al., 2000; Theunissen et al., 2001;
David et al., 2009). In the case of vocalization-modulated noise,
the STRF can be simplified to have a single spectral dimension, a
linear TRF that provides a characterization of temporal filtering
properties in the band around the neuron’s best frequency (Fig.
2A).

The linear TRF, although useful for characterizing basic tem-
poral filtering properties, cannot capture some of the temporal
dynamics observed in the neural responses (David et al., 2009). It
is well known that neurons adapt to sustained stimulation, and it
has been proposed that depression of input synapses contributes
to this adaptation (Tsodyks and Markram, 1997; Ulanovsky et al.,
2004). We simulated the response of a neuron with a single
excitatory, 25 ms latency depressing synapse to vocalization-
modulated noise and estimated a linear TRF from the response
(Fig. 2B). The resulting fit showed distinctly different features
from the underlying simulation. The linear TRF had a bimodal,
positive-negative time course typical of linear filters measured in
auditory cortex (David et al., 2009), despite the fact that the syn-
aptic weights in the simulation were exclusively positive. In ad-
dition, the onset latency of the linear TRF was shorter than the
actual latency of the simulated neuron (Fig. 2B, positive gain at 15
ms time lag vs actual 25 ms onset latency).

We compared the linear TRF to a nonlinear depression TRF
that accounts for the effects of synaptic depression before the
linear filtering stage. The strength of depression and its recovery
time can vary substantially across neurons (Tsodyks and
Markram, 1997), and the depression model accounts for this
diversity by passing the stimulus envelope through a filter bank
that mimics synapses with different depression properties (Fig.
2A). The depression TRF is then a weighted sum of the output of
all these filters, with weights chosen to best predict the response of
the neuron (Fig. 2B). When data from the same simulated neuron
were fit using this model, the resulting TRF captured the correct
excitatory tuning and latency of responses (Fig. 2C). The depres-
sion TRF was able to accurately characterize temporal response
properties for depression neurons with recovery time constants
up to 400 ms, limited only by the maximum time constant in-
cluded in the depression model (see Materials and Methods).

David and Shamma • Integration over Multiple Timescales in A1 J. Neurosci., December 4, 2013 • 33(49):19154 –19166 • 19157



Longer time constants could be incorpo-
rated into the model but did not benefit
analyses on the data used in this study
(Fig. 6).

The depression TRF subsumes the lin-
ear TRF in that one input channel does
not undergo depression and simply re-
peats the input stimulus. For a neuron
that does not undergo depression, param-
eter values in the depression TRF should
be zero, except for parameters associated
with the nondepressing synapse. We ob-
served this behavior when we simulated
the response of a nondepressing neuron
with an excitatory response (25 ms la-
tency) followed by inhibition (35 ms la-
tency; Fig. 2D). Thus, the depression TRF
can reveal distinct temporal response dy-
namics (Figs. 2C vs D) in neurons with
linear TRFs that appear very similar (Figs.
2B vs D).

Synaptic depression can explain
nonlinear response dynamics in A1
We compared linear and depression TRFs
estimated from the A1 single unit data.
Here, we consider three representative ex-
amples. Some neurons showed striking
differences between the linear and depres-
sion TRF. One neuron gave a strong
transient response to the onset of the vo-
calization modulated noise (Fig. 1C, top
row). The linear TRF for this neuron in-
dicated a very short latency excitatory re-
sponse (5–15 ms), followed by a slower
inhibitory response (Fig. 3A). This bi-
modal filter shape was characteristic of
linear TRF estimates for simulated neu-
rons that underwent depression (Fig. 2B).
When the linear TRF was used to predict
the PSTH response in a validation dataset
that was not used for estimation, it was
able to approximately predict epochs
when the neuron responded (compare
black and green curves, Fig. 3A, bottom,
prediction correlation, r � 0.46). How-
ever, it could not predict the strong re-
sponse at stimulus onset, and it tended
to overpredict responses later in the
stimulus.

The depression TRF for the same neuron showed only a very
weak inhibitory weight at its linear, nondepressing synapse (Fig.
3A, top right). Instead, it showed strong excitatory responses at a
number of synapses, with recovery time constants as long as 400
ms. The depression TRF was able to much better predict relative
response strength throughout the stimulus (Fig. 3A, bottom, red
curve), with a significantly greater correlation between the pre-
dicted and observed PSTH (r � 0.64, p � 0.05, jackknifed t test).

Other neurons showed evidence of synaptic depression with
more rapid dynamics. These neurons tended to respond to the
onset of each high-energy epoch in the stimulus (Fig. 1C, middle
rows). In one such example, the linear TRF was strongly bimodal,
with a very short latency excitatory response (Fig. 3B). The de-

pression TRF found non-zero weights for depressing synapses
with a relatively short recovery time constant, and it predicted
neural responses significantly better than the linear TRF (linear
r � 0.39, depression r � 0.54, p � 0.05, randomized paired t test).
Although the linear TRF was able to predict slow modulations in
the PSTH, the depression TRF was much better at capturing the
rapid dynamics of the transient responses.

The responses of other neurons largely followed the stimulus
envelope (Fig. 1C, bottom) and showed little influence of synap-
tic depression. In a final example, the linear TRF showed an ex-
citatory response 10 –20 ms after the stimulus (Fig. 3C). The
depression TRF had very similar properties to the linear TRF,
with large weights for the nondepressing synapse and much
smaller weights for depressing synapses. In this case, the predic-

Figure 1. A, Example waveform (top) and corresponding spectrogram (bottom) of continuous speech. In the spectrogram,
sound energy at a particular frequency (vertical axis) over time (horizontal axis) is indicated by color, where red represents the most
energy and blue represents the least. As is typical for speech, syllables occurring approximately once every 300 – 400 ms are
identified by coherent increases in stimulus energy across frequencies, separated by silent periods with very little energy. B,
Waveform and spectrogram of speech-modulated noise, plotted as in A. The temporal envelope of this stimulus matches that of the
speech in A, but the spectral content is uniform bandpass noise between 2 and 3 kHz. C, Diversity of peri-stimulus time histogram
(PSTH) responses of six example A1 neurons to a stimulus with the temporal dynamics in B. The stimulus envelope is plotted in red
in the top row. Periods with greater than average power are shaded in gray. For neurons with linear response properties, the PSTH
(black lines) should be coherent with the stimulus envelope, with consistently higher firing rates throughout the gray-shaded areas
(bottom rows). Some neurons show a persistent decrease in firing after a strong response to the beginning of the stimulus (top
rows) or transient responses to the onset of each syllable (middle rows), indicating nonlinear temporal integration. Data from
neurons marked with asterisks appear in Figure 3.
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tive power of the linear and depression TRFs was the same (linear
r � 0.74, depression, r � 0.74, p � 0.1, randomized paired t test).
Both models also predicted very similar PSTHs.

We compared performance of the TRF models over the entire
set of A1 neurons in our study (Fig. 4A). Across all the neurons
studied, either the linear or the synaptic depression TRF was able
to predict responses in the validation dataset significantly above

chance in 307 of 352 (87%, jackknifed t test, p � 0.05). Among
these responsive neurons, the synaptic depression TRF per-
formed significantly better than the linear TRF for 71 of 307
neurons (23%, p � 0.05, jackknifed t test), whereas the linear TRF
did not perform significantly better for any neuron. Even for
neurons without a significant change for the synaptic depression
model, there was a clear trend toward improvement. For the
entire set of responsive neurons, the average prediction correla-
tion for the synaptic depression TRF (mean r � 0.33) was signif-
icantly greater than that of the linear TRF (mean r � 0.29, p �
0.0001, randomized paired t test).

To obtain an absolute measure of model performance, we
computed the fraction of response variance explained (r 2), after
normalization for the effects of noise from finite stimulus repeti-
tion in the validation data (Sahani and Linden, 2003). After nor-
malization, the average fraction of response variance explained
was r 2 � 0.37 for the linear TRF and r 2 � 0.46 for the depression
TRF (Fig. 4B; n � 179 neurons with adequate repeats of the
validation stimulus, p � 0.0001, randomized paired t test). Thus,
a TRF incorporating synaptic depression shows substantially im-
proved performance over the linear model, with an average 24%
increase in variance explained.

The fact that the depression model contained a larger number
of parameters than the linear model (260 vs 20) raised the possi-
bility that its improved performance simply reflected the generic
ability of a more complex model to describe nonlinear responses,
rather than specifically reflecting the dynamics of synaptic de-
pression. To test for this possibility and to compare the perfor-
mance of the depression TRF to a more state-of-the-art model,
we also evaluated a second-order TRF on the same data (Pien-
kowski et al., 2009). The second-order model used a Volterra
series expansion of the stimulus in time to account for multipli-
cative interactions at different latencies. It required slightly more
parameters (400) than the synaptic depression TRF, and thus was
approximately matched in complexity. The average second-order
TRF did perform significantly better than the linear TRF by �9%
(mean fraction of normalized variance explained, r 2 � 0.40, p �
0.001; Fig. 4B), but it still performed significantly worse than the
synaptic depression TRF (p � 0.0001). Thus, a model explicitly
accounting for synaptic depression was better able to explain
time-varying responses in A1 than a more generic nonlinear
model with similar complexity.

Because the synaptic depression TRF incorporates long time
constants, one possible explanation for its improved perfor-
mance is that it integrates stimulus information over longer time
lags than either other TRF. To test for simple integration time
effects, we performed three control analyses. First, we increased
the maximum time lag of the linear TRF to 200 rather than 100
ms. This change did not significantly change performance and
actually slightly decreased predictive power, presumably because
of the increased number of model parameters (mean normalized
r 2 � 0.36). Second, we fit all three models with coarser 20 ms
rather than 5 ms time bins, thus increasing integration time by a
factor of 4 without changing the number of model parameters. In
this case, we observed an overall apparent improvement in per-
formance for all models that resulted from having temporally
smoothed the data (mean normalized r 2 � 0.41, 0.45, 0.52, for
linear, second-order and depression TRFs, respectively). How-
ever, this manipulation did not change the relative performance
of the different models (second-order TRF �11%, depression
TRF �26% relative to the linear TRF), nor did it change the time
constants of the depression TRF fits. Finally, we substituted a
bank of linear, decaying exponential filters into the depression

Figure 2. A, Schematic of linear and synaptic depression temporal response functions (TRFs)
for characterizing vocalization-modulated noise data. For the linear TRF (left), the stimulus can
be thought of as a presynaptic spike train with time-varying rate proportional to the stimulus
envelope. The TRF, then, mimics the synaptic potential after each input spike with a sequence of
weights, h(u), across time lags. The synaptic depression TRF (right) is a generalization of the
linear TRF, in which the same input arrives at multiple synapses, each with different depression
properties. The depression TRF assigns separate weights to each of these inputs. B, Linear TRF
estimated for a simulated neuron with a single excitatory input synapse that undergoes depres-
sion with a 150 ms recovery time constant. Circles indicate parameter weights estimated from
the data. Positive or negative values (vertical axis) indicate a relative increase or decrease,
respectively, in output spiking at a given time lag (horizontal axis) after positive stimulus en-
ergy. In attempting to account for the dynamics of the depressing synapse, the linear TRF has
shorter onset latency (15 ms) than the actual simulation (25 ms, gray line) and a late inhibitory
response. C, Depression TRF estimated for the same simulated neuron. Left, Each row schemat-
ically illustrates the time course of synaptic output for a stimulus consisting of a sequence of
square pulses (top row). Strong, long-lasting depression results in very little neurotransmitter
release after the onset of the first pulse (upper rows). Shorter-lasting depression results in
transient responses after the onset of each pulse (middle rows). A nondepressing, linear syn-
apse simply repeats the input (bottom row). The heat map at right shows estimated synaptic
weights. Red or blue regions represent increases or decreases, respectively, in output spiking
after input at the corresponding synapse, with latency on the horizontal axis. The positive
weights for the 80 and 200 ms synapses straddle the dynamics of the underlying 150 ms synapse
of the simulated neuron. Unlike the linear TRF, the depression TRF captures the correct response
latency and absence of late inhibitory inputs. D, For a simulated neuron with input (short-
latency excitation followed by longer-latency inhibition) that does not undergo depression, the
linear TRF (left) accurately captures the neuron’s filter properties. The depression TRF (right)
finds similar properties, with non-zero weights for the nondepressing synapse and the same
time course as the linear TRF (bottom row of heatmap).
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TRF (see Materials and Methods, Eq. 5)
and fit a linear approximation to the de-
pression TRF using the same procedure as
for the other models. This change caused a
slight but insignificant decrease in perfor-
mance relative to the linear TRF (mean
normalized r 2 � 0.34), again presumably
reflecting the larger parameter count.
Thus, the improved performance of the
depression TRF likely reflects its distinct
analytical formulation rather than simply
its longer memory.

Synaptic depression model reveals
biologically plausible temporal tuning
To characterize the dynamics revealed by
the linear and depression TRF estimates,
we computed the average TRF across neu-
rons. Neurons were grouped according to
whether the synaptic depression model
significantly improved predictive power
(depression neurons, Fig. 4A, filled cir-
cles, n � 71) or did not (nondepression
neurons, n � 236). The average linear
TRF differed substantially between the
two groups. For nondepression neurons,
the linear TRFs were largely positive, with
onset latencies of 10 –20 ms (Fig. 5A, left).
In contrast, depression neurons produced
bimodal linear TRFs that changed be-
tween positive to negative at short to long
latencies, respectively (Fig. 5B, left). Par-
ticularly striking about this subset of lin-
ear TRFs is that their onset latency appears
very short (�10 ms), earlier than that
considered plausible for A1 neurons
(Bizley et al., 2005).

To compare linear TRF properties
with those of the depression TRF, we
computed the average weights for the syn-
apse with highest overall gain (SD across
time lags) that underwent depression (i.e.,
any row of the depression TRF except the
bottom; Fig. 2C) and for the nondepress-
ing synapse (bottom row; Fig. 2C). As
expected, the average TRF of the nonde-
pression neurons was similar to that of
the average linear TRF, concomitant with
the example neuron for which both mod-
els performed similarly (Fig. 3C). The de-
pressing synapse showed only a weak
response, and the nondepressing synapse
showed similar dynamics to the linear
TRF (Fig. 5A, right). In contrast, the aver-
age TRF for depression neurons showed
a strong positive response for the depress-
ing synapse and a negative response for
the nondepressing synapse (Fig. 5B,
right). These TRFs had latencies closer to
what would be expected for A1 neurons
(10–15 ms) than the average linear TRF.
Slight deviations from zero remain at ex-
tremely short and long latencies, even in the

Figure 3. A, Example linear and depression TRFs for an A1 neuron. The linear TRF (upper left, plotted as in Fig. 2B)
suggests a short latency excitatory response (5–15 ms) followed by a slower inhibitory response. The depression TRF for
this neuron (upper right, plotted as in Fig. 2C) shows strong excitatory weights for two of the depressing inputs and much
smaller weights for the nondepressing input (bottom row). TRF accuracy was measured by the ability to predict the PSTH
response to a validation stimulus (bottom, actual PSTH in black). Prediction correlation (Pearson’s r) for each TRF appears
in the upper left corner of the plot (color corresponds to predicted PSTH). For this neuron, the linear TRF was able to track
changes in stimulus energy (green curve), but it could not predict the relative response to each syllable event, especially the
large transient at 0.2 s. The depression TRF, on the other hand, did a significantly better job predicting the relative response
over time (red curve, p � 0.05, jackknifed t test). B, Second example of linear and depression TRFs, plotted as in A. The
linear TRF again shows a strong bimodal response, with positive weights (increased firing) at very short latencies and
negative weights (decreased firing) at longer latencies. The depression TRF for the same neuron shows positive weights for
several of the depressing inputs with short time constants and has only small negative weights for the nondepressing
input. The comparison of prediction accuracy shows that both TRFs predict the relative response strength over time, but the
depression TRF more accurately captures the fine dynamics of the response to each syllable ( p � 0.05, jackknifed t test).
C, Third example of linear and depression TRFs. This linear TRF shows a more unimodal response, with longer latency than
in A. The depression TRF for the same neuron shows the strongest excitatory response to the nondepressing input. Both
TRFs predict the neural response with similar accuracy, indicating that this neuron shows no evidence of synaptic
depression.
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depression TRFs. Although substantially reduced from the very large
short latency gain in the linear TRF, these deviations may reflect a
smaller but persistent mismatch between the depression model and
underlying system.

If the functional properties of the synaptic depression model
capture the effects of actual underlying synaptic depression, one
would expect the properties of the depressing synapses in the
model to match those measured experimentally. For each synap-
tic depression TRF in the subset of 71 neurons showing a signif-
icant effect of depression, we measured the average time constant
of depressing synapses, weighted by their relative contribution to
response variance (Fig. 6A). The average time constant for these
TRFs was 121 ms. Previous studies that have examined the dy-
namics of synaptic depression intracellularly have reported time
constants on a similar, although slightly longer, time scale
(Tsodyks and Markram, 1997). The histogram of time constants
indicates that a large portion of A1 neurons have relatively short
time constants �100 ms, whereas a smaller number range widely
from 100 to 400 ms. Although the histogram suggests a bimodal

distribution, this trend is not significant (dip test) (Hartigan and
Hartigan, 1985).

Previous studies of synaptic depression have also shown that
neurons with low spontaneous spike rates are more likely to show
effects of synaptic depression (Hermann et al., 2007). This trend
reflects the fact that input synapses with low spontaneous activity
will undergo large changes in depression upon activation,
whereas synapses with greater spontaneous activity will already
be partially depressed before any stimulus inputs arrive. We com-
pared spontaneous rates for neurons that showed a significant
effect of depression and those that did not, and found the pre-
dicted effect. Depression neurons had significantly lower sponta-
neous spike rate than the nondepression group (Fig. 6B; p �
0.001, jackknifed t test).

As might be expected, TRF weights associated with depressing
synapses were greater for neurons that showed significant effects
of depression than for nondepression neurons by a factor of �3
(Fig. 6C). What was not expected was that the relative weight of
the nondepressing synapse was often negative for neurons that
showed significant effects of depression (see also Fig. 5B). In
contrast, for neurons that did not show an effect of depression,
the weight of the nondepressing synapse tended to be positive. At
face value, these results suggest that inhibitory inputs at the best
frequency are less likely to undergo depression than excitatory
inputs, but this trend toward inhibition in the nondepressing
channel could also reflect nonlinear mechanisms that are not
captured by the depression model.

Based on the intuition that the TRF reflects synaptic weights
(Fig. 2A), the linear TRF and each row of the depression TRF can
be interpreted as the postsynaptic potential evoked by an action
potential arriving at a single input synapse. If a TRF estimate does
reflect a synaptic potential, then the TRF weights should be uni-
modal across time lags. That is, the weights should be consistently
either positive or negative, respectively, for excitatory or inhibi-
tory inputs. The linear TRF often follows a pattern of excitation at
short latency followed by inhibition at longer latencies (Fig. 3),
which reflects the attempt of a linear temporal model to explain
transient responses to stimulus onsets (Fig. 2B). Although bi-
modal dynamics may provide a useful functional descriptor of
temporal properties, such as tuning to modulation rate (Kowalski et
al., 1996), the bimodal pattern of positive-to-negative weights in
the linear model likely does not reflect the input of a single
synapse.

We measured an index of unimodality as the absolute value of
the ratio of the average value of the TRF across time lags to the
average of its absolute value. An index of 1 indicates fully uni-
modal weights (all positive or all negative), and an index of 0
indicates half-positive and half-negative. When we compared the
unimodality index for synaptic depression and linear TRFs across
neurons (Fig. 6D; for depression TRFs, the unimodality index
was measured for the synapse with largest gain), the index was
systematically higher for synaptic depression TRFs and the aver-
age value across neurons was significantly greater than for linear
TRFs (mean depression 0.67, linear 0.28, p � 0.0001, randomized
paired t test). Thus, the strong tendency of the depression TRF to
be unimodal suggests that it provides a more biologically plausi-
ble model of synaptic potentials than the linear TRF.

Synaptic depression permits longer temporal integration
The hypothesis stated in the Introduction suggests that neurons
that undergo depression should be able to encode the temporal
dynamics of auditory stimuli over a longer period of time than
nondepressing neurons. To measure the temporal stimulus in-

Figure 4. A, Comparison of prediction accuracy for linear and depression TRFs across A1
neurons (n�307). Each point compares the prediction correlation for the linear TRF (horizontal
axis) and depression TRF (vertical axis) estimated for a single neuron. Filled points indicate the
71 neurons for which the depression TRF prediction correlation was significantly greater than
that of the linear TRF ( p � 0.05, jackknifed t test). B, Mean fraction of neural response variance
explained (r 2) by linear, second-order, and depression TRFs after accounting for sampling lim-
itations in the validation dataset (n � 179 neurons with at least 10 repeats of the validation
stimulus). Error bars indicate SEM. The second-order TRF shows an average improvement over
the linear TRF (0.40 vs 0.37, **p � 0.001, jackknifed t test). The depression TRF performed
significantly better than either other TRF (0.46, **p � 0.0001).
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formation encoded by the neurons in our
dataset, we used a nonparametric maxi-
mum a posteriori method for stimulus re-
construction from neural population
activity. Conceptually, this method is re-
lated to linear decoding algorithms (Bi-
alek et al., 1991; Mesgarani et al., 2009),
but rather than requiring linear recon-
struction filters, it uses a more general
probability analysis to infer the most
likely stimulus producing the neural pop-
ulation response. We discretized the re-
sponse of each neuron based on its firing
rate during the preceding 100 ms time
window. Then we measured the probabil-
ity of the stimulus in each preceding 5 ms
bin, conditioned on the population re-
sponse vector (Fig. 7A). To reconstruct
the stimulus, we computed the joint stim-
ulus probability across the neural popula-
tion to infer the most probable stimulus
preceding the response.

The reconstruction analysis was per-
formed using two equal-sized groups of
depression and nondepression neurons
(n � 57), selected from the subset of neu-
rons that had the same average prediction
accuracy and that were presented stimuli
with identical envelopes. Reconstruction
was more accurate at longer latencies for
the depression neurons than for the non-
depression neurons. For depression
neurons, the longest latency with recon-
struction error significantly better than
chance was 290 ms, whereas for nonde-
pression neurons it was 180 ms (blue vs
green curves; Fig. 7B, p � 0.001, jack-
knifed t test). Thus, after grouping neu-
rons based on an independent criterion (performance of the
linear vs depression TRF), the reconstruction analysis revealed
that the two groups encoded different temporal epochs of the
stimulus.

To test specifically whether synaptic depression can account
for the increased temporal integration time, we repeated the re-
construction analysis, but with neural responses simulated by the
linear and depression TRFs. For the depression neuron group,
the depression TRFs were able to replicate nearly the same pat-
tern of reconstruction as the actual neural data (Fig. 7C). On the
other hand, linear TRFs for those same neurons were not able to
reconstruct the stimulus at longer time lags. For nondepression
neurons, simulated responses by both depression and linear TRFs
replicated the shorter time course of accurate reconstruction
(Fig. 7D). Thus, synaptic depression can explain the increased
duration of stimulus encoding by the former group of neurons.

Discussion
Synaptic depression can explain the dynamics of A1 neural
responses over many hundreds of milliseconds, a critical time-
scale for discriminating natural sounds (Shannon et al., 1995;
Mesgarani et al., 2008). When nonlinear synaptic depression is
incorporated into a temporal response function (TRF), model
performance improves over traditional linear TRFs, and
model fits more plausibly reflect known biological properties

of neurons. The superior performance of the depression TRF does
not simply reflect its greater complexity, as a second-order Volterra
model with a similar number of parameters does not perform as
well. Instead, the synaptic depression model provides a better ap-
proximation of the mechanisms that actually produce responses in
A1.

Synaptic depression and stimulus encoding over
multiple timescales
Contextual modulation of auditory responses has been suggested
to play a number of computational roles in the brain, most prom-
inently in outlier detection (Näätänen et al., 2001; Ulanovsky et
al., 2003) and adaptation to stimulus variance (Dean et al., 2008;
Asari and Zador, 2009). The data reported here support the idea
that synaptic depression not only contributes to these processes
but also plays a more general role in encoding stimulus dynamics
(Penner and Shiffrin, 1980). The envelopes of speech and other
natural sounds consist of complex, irregular modulations lasting
hundreds of milliseconds that contain behaviorally relevant in-
formation (Shannon et al., 1995; Singh and Theunissen, 2003;
Mesgarani and Shamma, 2005). The auditory cortex must encode
the stimulus over this period to guide behavior in downstream
areas. Receptive field models typically reveal sensory integration
lasting up to only 50 –75 ms (David et al., 2009), but synaptic

Figure 5. A, Average TRF properties for neurons showing no significant difference between linear and depression TRFs (n �
236). The average linear TRF (left) for these neurons shows a characteristically rapid excitatory response and slower decay with
latency of �15 ms. Shading indicates one SE across neurons after normalizing each TRF to have the same total gain. Data for the
depression TRF (right) show the average temporal response for the single nondepressing synapse in blue and the average for the
depressing synapse with largest gain in red. The average temporal response for the nondepressing synapse response closely
resembles that of the linear TRF, and the average for the depressing synapse is much weaker. B, Average linear and depression TRFs
for neurons that show a significant increase in predictive power for depression TRFs (n�71), plotted as in A. For these neurons, the
average linear TRF has an excitatory response with very short latency (�5 ms) followed by an inhibitory response at longer
latencies. The average depression TRF shows a more biologically plausible fit, with an excitatory response by the depressing
synapse and a weaker inhibitory response by the nondepressing synapse. TRF fits were not constrained to have a particular sign or
latency. The more biologically plausible latencies for the depression TRF suggest that the model better captures important tem-
poral responses properties in A1.
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depression suggests a mechanism that can encode stimuli over
these longer timescales.

Similar to previous studies using more direct experimental
measurements (Tsodyks and Markram, 1997; Viaene et al.,
2011), we found that the dynamics of synaptic depression vary
substantially across neurons. Because of this variability, each
neuron encodes different contextual information, and a neu-
ral population together can encode complex sound envelope
features.

Variable degrees of synaptic depression across neurons may
be a general feature of cortical processing that enables the simul-
taneous representation of stimuli over multiple windows into the
past (Buonomano and Maass, 2009). As signals travel over many
synapses, integration times can accumulate and become even
longer without requiring recurrent activity or long-term plastic-
ity. This predicts that reconstruction from neural responses in
downstream auditory areas should be accurate over longer time
windows than in A1.

Stimulus context effects in
auditory cortex
The modulatory effects of stimulus his-
tory on the responses of A1 neurons have
been reported widely (Abeles and Gold-
stein, 1972; Brosch and Schreiner, 1997;
Ulanovsky et al., 2003; Ahrens et al., 2008;
Asari and Zador, 2009; Klampfl et al.,
2012), but underlying mechanisms have
remained largely a matter of speculation.
Most previous studies used relatively
small parametric stimulus sets to maxi-
mize sensitivity to modulatory effects.
With limited stimulus-response data
points, however, it has been difficult to
constrain general receptive field models of
the mechanism producing the effects.
More recently, Asari and Zador (2009)
studied modulation of responses to con-
tinuous natural sounds and found a vari-
ety of context effects, but the complexity
of the stimulus prevented detailed model-
ing of mechanism. Here, we used a
stimulus with intermediate complexity,
having natural temporal dynamics but
simple spectral structure. This hybrid
natural-synthetic stimulus permitted us
to determine whether a predictive filter
model can explain contextual effects on
neural responses to stimuli with natural
temporal dynamics.

Some previously reported contextual
effects last longer than the extreme of
�400 ms measured here (Ulanovsky et al.,
2003; Asari and Zador, 2009). Whether
these discrepancies reflect differences in
experimental preparation (species or an-
esthesia levels) (Reig et al., 2006) or addi-
tional unmodeled network effects (Yaron
et al., 2012) remains a question for further
study.

Synaptic depression could also con-
tribute to the mismatch negativity, an en-
hanced electrophysiological response to
oddball stimuli observed broadly across

the auditory system (Näätänen et al., 2001; Ulanovsky et al.,
2003). Synapses conveying a repeated input may be sent into a
state of depression. When a novel stimulus is presented that ac-
tivates even a slightly different set of synapses, the nondepressed
synapses will produce a stronger response that could produce the
enhanced evoked potential.

Nonlinear temporal integration in A1
Although we focused on synaptic depression here, we previously
considered alternative nonlinear models for dynamics in A1 dur-
ing the presentation of natural stimuli (David et al., 2009). One of
these models, incorporating a static spike threshold, did not ac-
count for the observed response dynamics, but it did improve
model performance overall. Thus, all the models tested here in-
corporate a threshold nonlinearity. Another model we consid-
ered applied broadly tuned contrast gain normalization to the
output of the linear filter (Carandini et al., 1997). In addition to
not explaining the observed dynamics, this model was less rele-

Figure 6. A, Histogram of depression recovery time constants for neurons showing significantly better performance by the
depression TRF (n � 71). The average neuron recovered with a time constant of 121 ms, but values ranged widely, up to 400 ms.
The trend toward a bimodal distribution was not significant (dip test). B, Histogram comparing average spontaneous firing rates
between depression and nondepression neurons, measured during the 500 ms prestimulus epoch. Neurons showing significant
evidence for depression had a lower mean firing rate (5.6�0.7 spikes/s, n�71) than nondepression neurons (7.9�0.4 spikes/s,
n � 236, p � 0.001, jackknifed t test). C, Comparison of gain in each depression TRF for the linear, nondepressing synapse
(horizontal axis) and for the strongest depressing synapse (vertical axis). Values are the normalized fraction of the root mean
square of the entire TRF. Neurons that did not show evidence for depression (open circles) tended to have positive gain on their
nondepressing synapse (mean 0.45) and much weaker gain on the depressing synapse (mean 0.18). Neurons that showed evi-
dence for depression (filled circles) often had negative gain on the nondepression synapse (mean �0.37) and much stronger gain
on the depressing synapse (mean 0.58). D, Comparison of unimodality of temporal responses for the linear TRF (horizontal axis)
and depression TRF (vertical axis) across neurons. A unimodal index value of 1 indicates a temporal response that is entirely
excitatory or inhibitory, whereas a value of 0 indicates a bimodal response that varies equally between excitatory and inhibitory
across latencies. For depression TRFs, the index is plotted for the synapse (depressing or nondepressing) with highest gain. For the
entire population of neurons (n � 307), the unimodal index is almost always greater for the depression TRF (mean 0.67) than for
the linear TRF (mean 0.28, p � 0.0001, jackknifed t test). The difference is particularly large for depression neurons (n � 71, filled
circles; depression TRF, mean 0.91; linear TRF, mean 0.22).
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vant to the current study, which focused
on narrowband stimuli that would not ac-
tivate a broadly tuned mechanism. More
recent work has suggested an alternative
model for gain normalization with nar-
row spectral tuning in A1 (Rabinowitz et
al., 2012). These effects occur on a simi-
lar timescale to the depression modeled
here, and further exploration of these
models will determine whether they de-
scribe similar or even the same underly-
ing mechanisms.

Nonlinear spectrotemporal models
that account for second-order stimulus
interactions may explain some response
properties in A1, although previous stud-
ies using these models have focused on
spectral rather than temporal integration
(Ahrens et al., 2008; Pienkowski et al.,
2009; Rabinowitz et al., 2012). The de-
pression model resembles the second-
order Volterra model, in that its
computations include a squaring of the
stimulus. However, the recovery time
constant in the depression model reflects
a basic analytical difference that permits it
to have longer memory than the second-
order model. Increasing maximum la-
tency did not improve performance for
either the linear or second-order TRF,
given the available data. Thus, the depres-
sion TRF provides a more accurate and
interpretable way to describe temporal
processing in A1.

Neurons in A1 vary in their tuning for
periodically modulated stimuli (Schreiner
and Urbas, 1988; Eggermont, 1991), and
modeling the neural population as a bank
of modulation rate-tuned filters has
proven useful for theoretical analysis and
signal processing applications (Dau et al.,
1997; Mesgarani and Shamma, 2005).
Modulation tuning has been character-
ized phenomenologically using linear and
second-order models (Kowalski et al.,
1996; Depireux et al., 2012), but synaptic
depression with short recovery time con-
stants suggests a mechanism that can
produce rate tuning in addition to the longer-lasting filter prop-
erties discussed above.

The synaptic depression model is a functional one, in that it
does not definitively identify the mechanism controlling nonlin-
ear processing in A1. Mechanisms other than synaptic depres-
sion, such as slow potassium currents in the postsynaptic neuron
(Jolivet et al., 2004) or intracortical feedback (Yaron et al., 2012),
could produce similar response dynamics. The mechanisms in-
volved may be distinguished in future studies involving more
spectrally complex stimuli or direct manipulation of neural cir-
cuits. Whatever the mechanism, however, it must engage dynam-
ics more like the synaptic depression model than the other
models tested in this study.

A model accounting for nonlinear temporal processing pro-
vides a new tool for studying the state dependence of auditory

representations. The influence of brain state on sensory responses
in A1 is well established, reflecting both explicit behavioral con-
trol (David et al., 2012) and uncontrolled changes in network
state (Marguet and Harris, 2011). Any effects of internal state on
synaptic depression or depression-like mechanisms can be ob-
served explicitly in models fit in these different conditions.

Inferring biological circuits from computational models
In his classic work on the visual system, Marr (1982) described
three approaches to characterizing sensory processing: computa-
tional, algorithmic, and implementational. Since then, most new
spectrotemporal models have been motivated largely at compu-
tational (Atencio et al., 2008; Pienkowski et al., 2009) and algo-
rithmic levels (Ahrens et al., 2008; Rabinowitz et al., 2012). Here,
we took a less common approach, motivated at the implementa-

Figure 7. A, Schematic of the maximum a posteriori procedure for reconstructing the preceding stimulus envelope dynamics,
based on the current neural population firing rate. At each point in time, the mean firing rate of each neuron was measured over the
previous 100 ms (top). Using an estimation dataset, the probability distribution of stimulus amplitude was computed at each
preceding time lag, conditioned on the neural response (heat maps in bottom panels). The stimulus was reconstructed using a
separate validation dataset by taking the value at the peak of the probability distribution for the current response. Reconstruction
from depression neuron responses (n � 57, blue line, middle) often matched the actual stimulus (black line) up to 200 ms in the
past. Reconstruction from an equal number of nondepression neurons tended to be accurate only at shorter time lags (green line,
bottom panel). When no information was available from the neural response, the reconstruction simply reverted to the mean
stimulus level (longer time lags, bottom). B, Comparison of normalized mean square error for reconstruction from responses of
neurons that showed evidence of depression (blue) and neurons that did not (green). Shading indicates SE, computed by jackknif-
ing. Baseline error (dashes) was computed by randomly shifting the spike times of each neuron relative to the stimulus before
reconstruction. Neurons showing evidence for depression were able to reconstruct significantly better than chance back to 290 ms
( p � 0.05, jackknifed t test). Nondepression neurons were able to significantly reconstruct better than chance only 180 ms into the
past. C, Reconstruction accuracy for simulated responses by TRF fits for the 57 depression neurons. Accuracy of reconstruction by
simulated depression TRF responses (red) closely matched reconstruction from the actual responses (blue dashes, replotted from
B). Reconstruction from simulated responses by linear TRFs for the same neurons (black) did not reconstruct the stimulus at longer
time lags. D, Reconstruction accuracy for simulated responses by TRF fits for nondepression neurons. The simulated responses of
both depression and linear TRFs were able to reconstruct the stimulus over the same latency range as the actual neural data (green
dashes, replotted from B).
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tional level (but see Gill et al., 2006; Ozuysal and Baccus, 2012;
Schinkel-Bielefeld et al., 2012). Our model incorporated synaptic
depression, a nonlinear mechanism known to operate in the cor-
tex, and proved more effective than the computationally moti-
vated second-order Volterra model. Nonlinear models linked to
physiological mechanisms are widely accepted for the sensory
periphery (Lyon and Mead, 1988; Yang et al., 1992), and our
findings suggest that the benefits of mechanism-based models
extend more centrally. Perhaps more importantly, the depression
model points to a mechanism that can explain its improved per-
formance, and future studies can test whether the putative
depression mechanism does indeed produce the observed func-
tional effects.

The enduring value of a new model for sensory processing can
be tested in the real world. Important concepts that have emerged
from spectrotemporal models of the auditory system have been
used to improve algorithms for speech and sound processing
(Mesgarani and Shamma, 2005). The results reported here dem-
onstrate that algorithms mimicking synaptic depression can en-
code complex stimulus dynamics over a longer time period than
a traditional linear model. Further investigation will reveal
whether new algorithms derived from biological circuits provide
better solutions to existing signal processing problems.

References
Abeles M, Goldstein MH Jr (1972) Responses of single units in the primary

auditory cortex of the cat to tones and to tone pairs. Brain Res 42:337–352.
CrossRef Medline

Ahrens MB, Linden JF, Sahani M (2008) Nonlinearities and contextual in-
fluences in auditory cortical responses modeled with multilinear spectro-
temporal methods. J Neurosci 28:1929 –1942. CrossRef Medline

Asari H, Zador AM (2009) Long-lasting context dependence constrains
neural encoding models in rodent auditory cortex. J Neurophysiol 102:
2638 –2656. CrossRef Medline

Atencio CA, Sharpee TO, Schreiner CE (2008) Cooperative nonlinearities
in auditory cortical neurons. Neuron 58:956 –966. CrossRef Medline

Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D (1991) Reading
a neural code. Science 252:1854 –1857. CrossRef Medline

Bizley JK, Nodal FR, Nelken I, King AJ (2005) Functional organization of
ferret auditory cortex. Cereb Cortex 15:1637–1653. CrossRef Medline

Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Adaptive rescaling
maximizes information transmission. Neuron 26:695–702. CrossRef
Medline

Brosch M, Schreiner CE (1997) Time course of forward masking tuning
curves in cat primary auditory cortex. J Neurophysiol 77:923–943.
Medline

Buonomano DV, Maass W (2009) State-dependent computations: spatio-
temporal processing in cortical networks. Nat Rev Neurosci 10:113–125.
CrossRef Medline

Carandini M, Heeger DJ, Movshon JA (1997) Linearity and normalization
in simple cells of the macaque primary visual cortex. J Neurosci 17:8621–
8644. Medline

Carandini M, Heeger DJ, Senn W (2002) A synaptic explanation of suppres-
sion in visual cortex. J Neurosci 22:10053–10065. Medline

Chance FS, Nelson SB, Abbott LF (1998) Synaptic depression and the tem-
poral response characteristics of V1 cells. J Neurosci 18:4785– 4799.
Medline

Dau T, Kollmeier B, Kohlrausch A (1997) Modeling auditory processing of
amplitude modulation: I. Detection and masking with narrow-band car-
riers. J Acoust Soc Am 102:2892–2905. CrossRef Medline

David SV, Gallant JL (2005) Predicting neuronal responses during natural
vision. Network 16:239 –260. CrossRef Medline

David SV, Mesgarani N, Shamma SA (2007) Estimating sparse spectro-
temporal receptive fields with natural stimuli. Network 18:191–212.
CrossRef Medline

David SV, Mesgarani N, Fritz JB, Shamma SA (2009) Rapid synaptic depres-
sion explains nonlinear modulation of spectro-temporal tuning in pri-
mary auditory cortex by natural stimuli. J Neurosci 29:3374 –3386.
CrossRef Medline

David SV, Fritz JB, Shamma SA (2012) Task reward structure shapes rapid
receptive field plasticity in auditory cortex. Proc Natl Acad Sci U S A
109:2144 –2149. CrossRef Medline

Dean I, Robinson BL, Harper NS, McAlpine D (2008) Rapid neural adapta-
tion to sound level statistics. J Neurosci 28:6430 – 6438. CrossRef Medline

deCharms RC, Blake DT, Merzenich MM (1998) Optimizing sound fea-
tures for cortical neurons. Science 280:1439 –1443. CrossRef Medline

Depireux DA, Dobbins HD, Marvit P, Shechter B (2012) Dynamics of
phase-independent spectro-temporal tuning in primary auditory cortex
of the awake ferret. Neuroscience 214:28 –35. CrossRef Medline

Eggermont JJ (1991) Rate and synchronization measures of periodicity cod-
ing in cat primary auditory cortex. Hearing Res 56:153–167. CrossRef
Medline

Eggermont JJ (1993) Wiener and Volterra analysis applied to the auditory
system. Hearing Res 66:177–201. CrossRef Medline

Eichhorn J, Tolias A, Zien A, Kuss M (2004) Prediction on spike data using
kernel algorithms. In: Advances in neural information processing sys-
tems, Vol 16 (Becker S, Thrun S, Obermayer K, eds), pp 1367–1374.
Cambridge, MA: MIT.

Garcia-Lazaro JA, Ahmed B, Schnupp JW (2006) Tuning to natural stimu-
lus dynamics in primary auditory cortex. Curr Biol 16:264 –271. CrossRef
Medline

Gill P, Zhang J, Woolley SM, Fremouw T, Theunissen FE (2006) Sound
representation methods for spectro-temporal receptive field estimation.
J Comput Neurosci 21:5–20. CrossRef Medline

Hartigan JA, Hartigan PM (1985) The dip test of unimodality. Ann Statist
13:70 – 84. CrossRef

Hermann J, Pecka M, von Gersdorff H, Grothe B, Klug A (2007) Synaptic
transmission at the calyx of Held under in vivo like activity levels. J Neu-
rophysiol 98:807– 820. CrossRef Medline

Jolivet R, Lewis TJ, Gerstner W (2004) Generalized integrate-and-fire mod-
els of neuronal activity approximate spike trains of a detailed model to a
high degree of accuracy. J Neurophysiol 92:959 –976. CrossRef Medline

Klampfl S, David SV, Yin P, Shamma SA, Maass W (2012) A quantitative
analysis of information about past and present stimuli encoded by spikes
of A1 neurons. J Neurophysiol 108:1366 –1380. CrossRef Medline

Klein DJ, Depireux DA, Simon JZ, Shamma SA (2000) Robust spectrotem-
poral reverse correlation for the auditory system: optimizing stimulus
design. J Comput Neurosci 9:85–111. CrossRef Medline

Kowalski N, Depireux DA, Shamma SA (1996) Analysis of dynamic spectra
in ferret primary auditory cortex: I. Characteristics of single-unit re-
sponses to moving ripple spectra. J Neurophysiol 76:3503–3523. Medline

Lyon RF, Mead C (1988) An analog electronic cochlea. IEEE Trans Acous-
tics Speech Signal Processing 36:1119 –1134. CrossRef

Machens CK, Wehr MS, Zador AM (2004) Linearity of cortical receptive
fields measured with natural sounds. J Neurosci 24:1089 –1100. CrossRef
Medline

Marguet SL, Harris KD (2011) State-dependent representation of ampli-
tude-modulated noise stimuli in rat auditory cortex. J Neurosci 31:6414 –
6420. CrossRef Medline

Marr D (1982) Vision. San Francisco: Freeman.
Mesgarani N, Shamma SA (2005) Speech enhancement based on filtering

the spectrotemporal modulations. IEEE Int Conf Acoustics Speech Signal
Processing 1105–1108.

Mesgarani N, David SV, Fritz JB, Shamma SA (2008) Phoneme representa-
tion and classification in primary auditory cortex. J Acoust Soc Am 123:
899 –909. CrossRef Medline

Mesgarani N, David SV, Fritz JB, Shamma SA (2009) Influence of context
and behavior on stimulus reconstruction from neural activity in primary
auditory cortex. J Neurophysiol 102:3329 –3339. CrossRef Medline
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