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SUMMARY

A variety of attention-related effects have been
demonstrated in primary auditory cortex (A1). How-
ever, an understanding of the functional role of higher
auditory cortical areas in guiding attention to acous-
tic stimuli has been elusive. We recorded from neu-
rons in two tonotopic cortical belt areas in the dorsal
posterior ectosylvian gyrus (dPEG) of ferrets trained
on a simple auditory discrimination task. Neurons in
dPEG showed similar basic auditory tuning proper-
ties to A1, but during behavior we observed marked
differences between these areas. In the belt areas,
changes in neuronal firing rate and response dy-
namics greatly enhanced responses to target stimuli
relative to distractors, allowing for greater attentional
selection during active listening. Consistent with ex-
isting anatomical evidence, the pattern of sensory
tuning and behavioral modulation in auditory belt
cortex links the spectrotemporal representation of
the whole acoustic scene in A1 to a more abstracted
representation of task-relevant stimuli observed in
frontal cortex.

INTRODUCTION

Although a hierarchy of cortical areas has been described in

the neuroanatomy of the mammalian auditory system (Hackett,

2011; Winer and Schreiner, 2010), there has been less progress

in elucidating the functional role of different cortical areas in

this hierarchy. Studies in the visual system have suggested

that the activity of neurons in higher areas in the sensory pro-

cessing hierarchy shows a greater influence of attention during

task performance (Kastner and Pinsk, 2004; Maunsell and

Cook, 2002). Here, we investigate whether a similar hierarchy

of attention exists in the auditory system and how that hierar-

chy extracts behaviorally relevant information from incoming

sounds.
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Previously, we have characterized the effects of attention at

two points in the auditory cortical hierarchy of the ferret: primary

auditory cortex (A1) (Fritz et al., 2003) and dorsolateral frontal

cortex (dlFC) (Fritz et al., 2010). These findings suggest that

attention selectively highlights foreground stimuli by initiating

rapid, reversible changes in sensory tuning. Consistent with find-

ings in other sensory systems (Feldman, 2009), A1 neurons

undergo rapid, short-term task-dependent changes of their sen-

sory tuning properties when an animal engages in a new auditory

task that requires discrimination between spectrotemporal

sound features (Edeline et al., 1993; Fritz et al., 2003). Tuning

properties do not reshape completely during behavior, but

instead they change in such a way as to enhance contrast

between task-relevant stimulus classes (David et al., 2012) and

thus presumably enhance behavioral performance with the

benefit of cortical filters retuned to the relevant task stimuli.

In contrast toprimary sensory areas, responses indlFCencode

a more dynamic, abstract representation of task-relevant stimuli

and other task events (Miller and Cohen, 2001). For example,

dlFC activity during an auditory discrimination task reflects pri-

marily the behavioral meaning of the signals (e.g., a warning of

danger) and less their physical attributes (e.g., frequency or loud-

ness of a tone) (Fritz et al., 2010). Such frontal activity may guide

behavioral decisions and motor actions and could, in principle,

provide the top-down signals that induce the task-related recep-

tive field changes observed in A1 (Ahissar et al., 2009).

Observations of the qualitative difference in the nature of audi-

tory representations in A1 and dlFC motivated us to examine

neurophysiological activity in auditory cortical belt areas in the

dorsal posterior ectosylvian gyrus (dPEG) of the ferret. Previous

neurophysiological mapping studies of the auditory cortex in the

anesthetized ferret (Bizley et al., 2005, 2007; Nelken et al., 2008)

suggested the presence of two adjacent tonotopic areas (PPF

and PSF) ventral to A1. Neuroanatomical studies indicate that

these two tonotopic belt areas are reciprocally connected with

the primary field A1 and project to higher-order auditory cortical

fields, such as VP (Bizley et al., 2007; Pallas and Sur, 1993). In

this study, we confirmed the basic sensory tuning properties

that have previously been reported in dPEG.

To explore whether the auditory representations in the

two tonotopic dPEG areas in the awake, behaving ferret are
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Figure 1. Ferret Auditory and Dorsolateral

Frontal Cortex

Lateral view of the whole ferret (atlas) brain indi-

cating location of dorsolateral frontal cortex (dlFC)

and auditory cortex (AC) on the anterior, middle,

and posterior ectosylvian gyri (AEG, MEG, and

PEG). A1 is situated in posterior MEG, PPF

and PSF are located in the dorsal PEG (dPEG), and

pro-PPF neighbors PPF rostrally. Scales indicate

stereotaxic rostrocaudal and dorsoventral position

of AC in the brain. The whole ferret AC extends

over �6 mm rostrocaudally and �7 mm dorso-

ventrally.

See also Figure S1.
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intermediate between the more veridical A1 and abstract dlFC

representations, we measured behaviorally-driven response

plasticity in the dPEG fields as ferrets actively engaged in an

auditory task that required them to distinguish between noisy

sounds and pure tones. Rather than measuring behaviorally-

driven changes in spectrotemporal receptive fields, as in previ-

ous studies of attention-driven plasticity in A1 (Atiani et al.,

2009; David et al., 2012; Fritz et al., 2003, 2005, 2007), in this

study we measured behaviorally-driven changes directly in

evoked responses to task-relevant acoustic stimuli (Fritz et al.,

2010). We compared these data to single-unit recordings from

A1 and dlFC using the same task and stimuli for a direct compar-

ison across areas. We found that neurons in dPEG exhibit a

mixture of the sensory responses and task-related plasticity

observed in A1 and dlFC, suggesting that dPEG does in fact lie

at a critical stage of transformation between a faithful represen-

tation of physical stimulus properties and a representation of

abstracted task-relevant categories.

RESULTS

In order to study changes in representation across the auditory

system, we recorded single-unit activity in two nonprimary audi-

tory tonotopic fields (Figure 1) in the ferret dPEG (Bizley et al.,

2005), the posterior pseudosylvian field (PPF), and posterior

suprasylvian field (PSF). Neural activity was recorded in dPEG

during passive listening (n = 1,156, 8 animals) and during an audi-

tory task requiring the discrimination between noise and pure-

tone stimuli (n = 260, 7 animals) (Fritz et al., 2003). We compared

these data to recordings from a primary auditory area, A1, during

presentation of the same stimuli (n = 2,448, 20 animals) and the

same auditory discrimination behavior (n = 283, 10 animals).

Some of the A1 data were recorded for previous studies (David

et al., 2012; Fritz et al., 2003, 2005) and pooled with new A1

recordings from animals in the dPEG data set.

To study representations across the auditory processing hier-

archy, we also compared task-dependent modulation of activity

in the auditory cortical neurons with that of neurons in the dlFC of

ferrets performing the same tone detection task. For this com-

parisonwe reanalyzed data (n = 534, 5 animals) from a previously

published study (Fritz et al., 2010).
Anatomical Location of Auditory Cortical Recordings
The two tonotopic auditory belt fields in dPEG are located ventral

to A1 in ferret and share a common low-frequency border with A1

(Bizley et al., 2005). The relative locations of PPF and PSF

were functionally distinguished by an additional low-frequency

boundary, running roughly perpendicular to the A1 border and

dorsoventrally between the two regions (Bizley et al., 2005). Fre-

quency reversals indicated boundaries between the three

cortical fields (Figure S1 available online) in addition to transi-

tions in tuning observed between A1 and dPEG (Figure 2). The

two dorsal tonotopic areas, PSF and PPF, extend �2–3 mm

ventral from the common low-frequency border with A1 to VP,

another nonprimary field in auditory cortex (Bizley et al., 2007;

Pallas and Sur, 1993). The posterior borders of A1 and PSF

were characterized by the absence of auditory tuning and the

presence of visual responses (from bordering visual cortex). To-

notopic mapping of A1, PPF, and PSF allowed us to delineate

areal borders that were marked with lesions for subsequent his-

tology to confirm the location of our physiological recordings

(see Experimental Procedures and Figure S1).

Passive Auditory Tuning Properties
We compared auditory responses in A1 and in the dPEG

fields during passive stimulus presentation to awake, quiescent

ferrets. Across the entire population of cells studied, many re-

sponded reliably to tone and/or noise stimuli during passive

auditory stimulation (A1, n = 2,317/2,532; dPEG, n = 918/

1,130, firing rate modulated from spontaneous, p < 0.05, jack-

knifed t test). Passive and behaviorally modulated activity was

not significantly different in the two tonotopic fields in dPEG,

and hence recordings from those areas were grouped together

for analysis. These results were consistent with earlier neuro-

physiological studies in the anesthetized ferret that found no dif-

ferences in basic auditory properties between these two dPEG

fields (Bizley et al., 2005).

In general, there was overlap of very basic tuning properties

between A1 and dPEG, such as a similar distribution of fre-

quency tuning in each area (Figure 2A). However, for most of

the measured tuning properties, dPEG neurons tended to span

a wider range of extreme values, lending heavier tails to their dis-

tribution histograms. Thus, because a small number of neurons
Neuron 82, 486–499, April 16, 2014 ª2014 Elsevier Inc. 487



Figure 2. Comparison of Basic Auditory Tuning Properties in A1 and dPEG
Each histogram plots the fraction of neurons with tuning at the value specified on the horizontal axis in A1 (black) and dPEG (gray). All PPF and PSF neurons were

pooled in the dPEG. Bars at the top in corresponding shades indicate 1 SE around the mean for each area.

(A) Best frequency. All neurons with measurable auditory evoked responses were included (A1: n = 2,317/2,532, dPEG: n = 918/1,130, p < 0.05, jackknifed t test).

Mean A1: 4,330 Hz; dPEG: 3,773 Hz, p > 0.1, jackknifed t test.

(B) Frequency tuning bandwidth. All neurons with measurable auditory evoked responses were included (A1: n = 2,317/2,532, dPEG: n = 918/1,130, p < 0.05,

jackknifed t test). Mean A1: 0.95 oct; dPEG: 1.41 oct, p < 0.01.

(C) Onset latency. All neurons with measurable auditory evoked responses were included (A1: n = 2,317/2,532, dPEG: n = 918/1,130, p < 0.05, jackknifed t test).

Mean A1: 15 ms; dPEG: 25 ms, p < 0.0001.

(D) Response duration. Only neurons with significant phase-locking to TORCs, as measured in (E), were included (A1: n = 1,466, dPEG n = 280, SNR >0.3).

Mean A1: 33 ms; dPEG: 36 ms, p > 0.01.

(E) Signal-to-noise ratio (SNR) measured as trial-to-trial phase-locking to broadband TORC stimuli. All neurons withmeasurable auditory evoked responses were

included (A1: n = 2,317/2,532, dPEG: n = 918/1,130, p < 0.05, jackknifed t test). Signal-to-noise ratio (SNR) measured as trial-to-trial phase-locking to broadband

TORC stimuli. Mean A1: 1.07; dPEG: 0.40, p < 0.01.

(F) STRF sparseness index, reflecting the ratio of peak magnitude to average magnitude of the STRF. Only neurons with significant phase-locking to TORCs, as

measured in (E), were included (A1: n = 1,466, dPEG n = 280, SNR >0.3). Low SNR can also decrease sparseness index values; thus mean sparseness values

binned by SNR, as measured in (E). Error bars indicate 1 SEM, measured by jackknifing. Mean A1: 2.98; dPEG: 1.41, p < 0.0001.

See also Figure S2.
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had very broad frequency tuning in dPEG, the average tuning

bandwidth was slightly broader on average compared to A1 (Fig-

ure 2B, p < 0.01, jackknifed t test). More substantial differences

between A1 and dPEG were observed in their temporal dy-

namics. Overall, dPEG neurons were more sluggish than those

in A1, having a propensity for longer onset latencies (Figure 2C,

p < 0.0001, jackknifed t test) and a tendency toward longer

response duration (Figure 2D, p < 0.01, jackknifed t test).

Neurons in dPEG were also less likely to produce reliable,

phase-locked responses to broadband rippled noise stimuli.

We measured phase-locking by a signal-to-noise ratio (SNR) of

the time-varying response to temporally orthogonal ripple com-

binations (TORCs) commonly used to characterize spectrotem-

poral tuning in A1 (Klein et al., 2006). Neurons with high SNR

tend to be driven reliably by the modulations in the TORC

stimuli, permitting estimation of spectrotemporal receptive fields

(STRFs). Compared to A1, where 58% of the cells had an SNR

>0.3 (Figure 2E), the proportion of neurons with the same SNR

was far smaller in dPEG (25%, p < 0.001, jackknifed t test). For

dPEG neurons that showed reliable phase-locked responses

to TORCs, spectrotemporal receptive fields were likely to be

more complex and less compact (see examples in Figure S2).

We quantified this difference by computing a sparseness index

for each STRF, measured as the ratio of the peak amplitude of

the STRF to the SD of all STRF parameters. Because A1 STRFs

tended to have more zero coefficients and thus smaller SD,

sparseness index values were higher in A1 than in PEG, even

after controlling for differences in SNR between areas (Figure 2F,

p < 0.001, jackknifed t test).

One consequence of weaker phase-locking to TORCs was

that the percentage of sound-responsive units that yielded

an interpretable STRF in dPEG (25%) was far lower than in A1

(58%). Because of the relative paucity of linear responses in

dPEG, it was difficult to measure STRF changes as indicators

of rapid plasticity in dPEG cells, as was previously done in A1

(Fritz et al., 2003). Instead, we measured task-dependent

changes in the amplitude and dynamics of PSTH responses to

the reference and target sounds, as in previous studies in the

frontal cortex (Fritz et al., 2010). We were able to measure tuning

changes more reliably using narrowband noise as a reference

stimulus in a small set of neurons (see below).

Target Enhancement in PEG during Behavior
We recorded the activity of a subset of auditory-responsive cells

(A1, n = 283; dPEG, n = 260) while animals performed an auditory

task in which they signaled, through avoidance behavior, the

presence of a target tone in a sequence of broadband TORCs

or narrowband noise stimuli (Fritz et al., 2003, 2010). Responses

from each unit were recorded during behavior as well as in a pas-

sive state pre- and postbehavior. The effects of behavior were

measured by comparing the PSTH response to the task stimuli

between passive and behaving conditions.

When animals engaged in the task, 42% (110/260) of dPEG

cells exhibited a significant change in their PSTH response to

the target (red) and/or reference (blue) stimuli (p < 0.05, jack-

knifed t test). Among these significantly modulated neurons,

changes in responses to the task stimuli varied substantially in

their selectivity and magnitude, but the common trend was to
enhance target responses and/or suppress reference responses

(Figure S3). The changes in some cells matched the overall trend

in the population. For example, a cell that gave only weak tran-

sient responses to both reference and target stimuli during pas-

sive listening (Figure 3A, left panel), responded less to reference

sounds but gave a strong sustained response to targets during

behavior (Figure 3A, middle panel). Other cells showed effects

on the response to one or the other stimulus, reducing responses

to the reference (Figure 3B) or enhancing responses to the target

(Figure 3C). Responses generally returned to their prepassive

baseline after behavior was complete (Figures 3A and 3B).

Increasing Target Enhancement across the Auditory
Processing Hierarchy
To contrast the patterns of rapid plasticity in dPEG and A1, we

compared the activity of the 110 dPEG neurons and 155 A1 neu-

rons that showed significant changes in their response to task

stimuli (reference and/or target) during behavior (p < 0.05, jack-

knifed t test). Population PSTH responses were computed by

normalizing each neuron’s response according to its maximum

magnitude and sign (enhancement or suppression relative to a

spontaneous baseline averaged across all stimuli and behavior

states) and then averaging PSTHs from each behavior condition

across neurons in each brain area. We also computed popula-

tion average PSTHs for 266 auditory neurons recorded in dlFC

during the identical task (Fritz et al., 2010). Note that normalizing

by sign provided a simple way to measure the magnitude of

stimulus-driven responses, independent of whether they were

enhanced or suppressed relative to baseline. This normaliza-

tion primarily affected PSTH measurements in dlFC, for which

approximately half the neurons (47%) were suppressed from

baseline by the target sound (Fritz et al., 2010). Fewer A1

(17%) and dPEG (14%) neurons were suppressed relative to

their spontaneous rate by the task stimuli, and the influence of

sign normalization in these areas was minimal (Figure S4).

The PSTH response to task stimuli showed progressively

larger behaviorally-induced changes across A1, dPEG, and

dlFC. In A1, there was almost no net change in the average target

response during behavior (Figure 4A), while reference responses

were slightly suppressed. In dPEG (Figure 4B), target and refer-

ence responses changed more appreciably during behavior but

in opposite directions (enhancing target response and diminish-

ing reference response), thus increasing the contrast between

them. This change in contrast became nearly absolute in the

dlFC, where neurons rarely responded to any stimuli during pas-

sive listening, but responded selectively only to targets during

behavior (Figure 4C). The same patterns can also be observed

in individual neuron responses in the different cortical areas

(Figure S3).

The simultaneous enhancement of target responses and sup-

pression of reference responses produces a pattern of enhanced

contrast between target and reference stimuli. To quantify

changes for individual neurons, we plotted the difference be-

tween each neuron’s target and reference response in the pas-

sive versus active states (Figure 5, left column). If there was no

change in contrast, e.g., if overall firing rate simply changed

due to increased or decreased arousal, then all points (neurons)

would lie along the diagonal line of unity slope. Instead, points
Neuron 82, 486–499, April 16, 2014 ª2014 Elsevier Inc. 489



Figure 3. Raster Plot Comparing Target and Reference Responses for Three PEG Neurons, before, during, and after Behavior

Target responses (red) and reference responses (blue) are shown before (left column, ‘‘pre-passive’’), during (middle, ‘‘active’’), and after behavior (right,

‘‘post-passive’’). Dashed green lines indicate sound onset and offset. Curves below the rasters show the PSTH response averaged across all target or reference

sounds and using 50 ms bins (shading indicates 1 SEM computed by jackknifing). Gray horizontal shading in rasters indicate incorrect trials where the artifact

from the punishment period was removed.

(A) In this example, the neuron gave a transient response to the target tone and a sustained response to the reference noise during passive listening. During

behavior, the target response became sustained and increased in overall spike rate relative to the spontaneous baseline (77%) while the reference response

decreased and became slightly suppressed after the initial transient (�15%). This resulted in an overall enhancement in the target response relative to the

reference response.

(B) This neuron produced a positive sustained response to reference sounds but was slightly suppressed by targets during passive listening. During behavior, the

target response increased slightly, but the reference response decreased substantially across the entire period of stimulation by �40%.

(C) For a third neuron, reference and target sounds produced a strong response during passive listening. During behavior, the target response increased (18%)

while the reference response was slightly suppressed (�3%).
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tended to lie above the diagonal, reflecting an increased

response to target sounds relative to reference sounds during

behavior. Although some individual A1 neurons showed large

changes, the overall population shift was relatively small for A1

units. The population shift was substantially larger in dPEG (three

points in red in Figure 5Bcorrespond to the examples in Figure 3).

The behaviorally-induced change in target versus reference

response was even greater in dlFC, as can be seen in the pro-

gressively shifted distributions (Figure 5, right column). In A1,

the relative selectivity to target tones increased by �12% during

behavior (n = 155/283 neurons undergoing significant behavioral

modulation), a change that is consistent with earlier reports from
490 Neuron 82, 486–499, April 16, 2014 ª2014 Elsevier Inc.
STRF measurements in A1 (David et al., 2012). Using the same

response measures, neurons dPEG exhibited an �2-fold larger

increase in selectivity (21.5%, n = 110/260 modulated neurons),

significantly larger than in A1 (p < 0.01, jackknifed t test). Neurons

in dlFC showed a shift of �70% (n = 266/534 modulated neu-

rons), significantly larger again than in dPEG (p < 0.001, jack-

knifed t test).

Dependence of Plasticity on BF and Target Frequency
Contrast enhancement between target and reference responses

across the neural population was dependent on baseline audi-

tory tuning. The difference between a neuron’s BF and the target



Figure 4. Comparison betweenBehavior-Dependent PSTHChanges
at Three Levels of Auditory Processing

(A) Average behavior-dependent change in reference and target responses

in A1. Left: plots prepassive (dashed) versus active (solid) normalized PSTH

response to reference noise across all neurons that underwent a significant

change in evoked response during behavior (n = 155 neurons significantly

modulated during behavior). The average reference response decreases

slightly in these neurons. Right: compares the average PSTH response to

target tones for the same set of A1 neurons. The average target response does

not change significantly during behavior.

(B) Target and reference PSTH comparison for dPEG, plotted as in (A) (n = 110).

In addition to a slightly larger decrease in reference response during behavior

in dPEG (left panel) than observed in A1, the average target response also

increases in dPEG.

(C) Target and reference PSTH comparison for dlFC (n = 266). Here, both the

sign and magnitude of responses has been normalized so that suppression of

activity by target or reference, which occurs in �40% of cells, is plotted as a

positive modulation. In dlFC, neurons show consistently very little response

during passive listening and respond only to the target during behavior.

See also Figure S3.

Figure 5. Comparison of Overall Behavior-Induced Changes in

Target Preference at Three Levels of Auditory Processing

(A) Average behavior-dependent change in reference and target responses in

A1. Left: compares the average target preference (i.e., target minus reference

response) for each A1 neuron during passive listening (horizontal axis) and

during behavior (vertical axis). Units that underwent significant changes in

responseduring behavior are plotted in black (n = 155/283, p < 0.05, jackknifed t

test). Overlap of black and gray points reflects the fact that significance was

tested by a Z score (i.e., change in mean firing rate normalized by the SEM) so

that small absolute changes in firing rate canbe significant if responsevariability

is small. Right: a histogram of the change in the relative target preference

betweenpassiveandactive conditions (i.e., distance fromthediagonal in the left

panel). Units with significant increases/decreases are plotted in light/dark pur-

ple. The average change in target preference during behavior in A1 was 11.9%,

significantly greater than expected by chance (p < 0.001, jackknifed t test).

(B) Task-dependent target versus reference changes in dPEG, plotted as in (A)

(n = 110/260 significantly modulated neurons). Together these changes lead to

an overall average change in target preference of 21.5% during behavior (p <

0.001, jackknifed t test).

(C) Task-dependent target versus reference changes in dlFC (n = 266/530

significantly modulated neurons). Neurons in this area undergo a much larger

change, averaging a +69.8% change in target preference, reflecting the strong

target-selective response that appears only during behavior (p < 0.001,

jackknifed t test).

See also Figure S4.
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tone frequency (TF) varied across recordings. When the change

in target versus reference response (see Figure 5B) is plotted as

a function of the difference between each neuron’s BF and TF
Neuron 82, 486–499, April 16, 2014 ª2014 Elsevier Inc. 491
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(Figures 6A and 6B), the majority of points lie above zero, reflect-

ing the overall relative enhancement of target responses. In both

areas, this change was slightly larger for neurons with BF near

the target. In A1 this trend was not significant (r = �0.08), but

in dPEG the negative correlation between BF-TF distance and

target enhancement was significant (r = �0.23, p < 0.05, jack-

knifed t test).

Target enhancement in both A1 and dPEG were particularly

large for neurons with BF less than one-quarter of an octave

from the target tone frequency (Figure 6C). In order to understand

the separate contribution of reference and target responses to

the target enhancement, we considered average changes in

responses to these stimulus categories after grouping neurons

into equally sized bins according to the octave distance between

neuronal BF and task target frequency. This grouping revealed

that changes in normalized target response depend on both

the area and neuronal tuning. In A1, only neurons with BF

<0.15 octave from TF showed significantly enhanced target

responses relative to the reference response (Figure 6D, p <

0.05, jackknifed t test). In dPEG, a larger pool of neurons, with

BF <0.8 octave from TF, showed increased target responses

(Figure 6D, p < 0.01 for both 0.15 and 0.8 octave groups, jack-

knifed t test). Thus, while tone-target enhancement was similar

in A1 and PEG for the near-target group, the increase in tone-

target response was significantly greater for the middle group

in dPEG (p < 0.01, jackknifed t test). As expected, changes in

broadband TORC reference responses showed no dependence

on tuning. In both areas, the decrease in reference response was

similar, regardless of the BF-TF difference (Figure 6E).

Global Suppression and Selective Target Enhancement
during Behavior
Our comparison of auditory responses during passive listening

and behavior revealed successively larger enhancement of

target responses relative to reference responses through A1,

dPEG, and dlFC (Figure 5). The relatively increased response

to tonal targets took place in the context of a global decrease

of responses in auditory cortex during behavior, consistent

with previous studies (Atiani et al., 2009; Otazu et al., 2009).

Although we were unable to recover reliable measures of

spectrotemporal tuning with the TORC stimuli for most dPEG

neurons, we were able to measure spectral tuning curves for a

subset of dPEG cells for which we used narrowband noise as

a reference sound (n = 55). Data collected using this stimulus

showed the same pattern of target enhancement as when

TORCs were used as references, with �35% of neurons signifi-

cantly modulated during behavior (19/55, p < 0.05, jackknifed

t test). In these cells, we were able to measure frequency tuning

from responses to the bandpass noise reference stimuli and

could determine whether task-dependent changes in frequency

tuning showed any influence of the target tone frequency (Fig-

ures 7A and 7B). As in the case of TORCs, the response to band-

pass noise was generally suppressed during behavior. However,

this suppression was significantly less for the noise band at the

target frequency (Figures 7C and 7D). Thus, while reference

responses were overall weaker during behavior, they were less

suppressed (i.e., relatively larger) at the target frequency

compared to other frequencies. Hence, in the behavioral state,
492 Neuron 82, 486–499, April 16, 2014 ª2014 Elsevier Inc.
suppressive sculpting of the response spared the frequency

region near the target, thus enhancing the effective contrast

between target and reference. This relative enhancement is

presumably what accounts for the STRF enhancement at the

target frequency reported earlier in A1 (Fritz et al., 2003).

DISCUSSION

Receptive fields in A1 undergo rapid spectral and temporal

changes during behavior that enhance the representation of

acoustic features relevant to the task at hand (Edeline et al.,

1993; Fritz et al., 2003, 2005). This study aimed to expand the

investigation of rapid task-related plasticity into higher-order

auditory areas as possible intervening stages for transforming

sensory representations between A1 and the frontal cortex (Fritz

et al., 2003, 2010) and to explore the process of selective atten-

tion in which representation of foreground events and features

are enhanced and background events are suppressed so as to

enhance sensory perception (Froemke et al., 2013). Our main

finding is that a similar form of rapid task-induced plasticity

occurs in the cortical belt areas in dPEG as in A1, but with

much larger magnitude. The difference in the magnitude of plas-

ticity is driven largely by a selective increase in dPEG response

firing rates to target tones during behavior. This pattern of dis-

tractor suppression and selective target enhancement suggests

a general mechanism by which top-down control circuits could

gradually extract behaviorally relevant sensory features through

a hierarchy of brain areas (Ahissar et al., 2009).

Extensive studies in the visual system have revealed a pattern

of successively larger attention effects through the ascending

visual cortical hierarchy (Kastner and Pinsk, 2004). A similar hier-

archy of subjective sensory experience has been described in

the somatosensory system, with increasing proportions of neu-

rons in higher areas correctly predicting behavioral responses

of the animal (de Lafuente and Romo, 2006). A small number

of studies in the auditory system have investigated the modula-

tory effects of attention and behavior on responses in nonpri-

mary auditory areas in the rat (Polley et al., 2006; Takahashi

et al., 2010, 2011), cat (Diamond and Weinberger, 1984), rhesus

monkey (Niwa et al., 2013; Tsunada et al., 2011) and humans

(Mesgarani and Chang, 2012) and found changes in receptive

field plasticity that are typically greater in quantity or different

in quality than observed in A1. However, direct comparisons

between areas have been limited and less conclusive. By

comparing the effects of an identical behavior between three

different areas (A1, dPEG, and dlFC) our data suggest that the

auditory, visual, and somatosensory systems may have a similar

hierarchical structure, in which primary areas provide veridical

information about sensory inputs, while task-irrelevant (back-

ground or distracting) information to the current task is gradually

suppressed as signals are transmitted through higher-order sen-

sory areas to frontal executive areas.

Consistent with the view that perceptual decisions are repre-

sented in the frontal cortex, recent studies of premotor and

prefrontal cortical neurons found distinct populations of neu-

rons selectively encoding ‘‘stimulus presence’’ and ‘‘stimulus

absence’’ decisions (de Lafuente and Romo, 2006; Merten and

Nieder, 2012). In the go/no-go behavioral paradigm used in



Figure 6. Influence of Similarity between Target Frequency and Neuronal Best Frequency on Behavior Effects

(A) Change in target preference for each A1 unit during behavior (vertical axis), plotted as a function of difference between the target frequency (TF) and the best

frequency (BF). Units that underwent significant changes in response during behavior are plotted in black (n = 155/283). Smaller differences between TF and BF

showed a weak trend toward greater increases in target preference (r = �0.08, p > 0.05, jackknifed t test).

(B) Scatter plot of changes in dPEG, plotted as in (A) (n = 110/260 significantly modulated neurons, r = �0.23, p < 0.05, jackknifed t test).

(C) Average target enhancement index in A1 and dPEG for all neurons and after grouping according to the difference between BF and task target frequency. Error

bars indicate 1 SEM, computed by jackknifing. In both areas, target enhancement was slightly larger for neurons with BF very similar to TF (<0.15 octave dif-

ference). Target enhancement was significantly stronger for neurons with BF-TF difference >0.15 octaves in dPEG (*p < 0.05, jackknifed t test) compared to A1.

(D Average fraction change in target responses for A1 and dPEG neurons, plotted as in (C). Increases in target responses were greater in dPEG for the group of

neurons with BF within 0.15–0.8 octaves of TF (**p < 0.01, jackknifed t test), suggesting that a larger pool of neurons participates in the target enhancement

compared to A1.

(E) Average fraction change in reference responses for A1 and dPEG neurons. Reference responses tended to decrease regardless of the BF-TF difference in

both areas.
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this study, it is crucial for the animal to rapidly identify the target

stimulus and quickly cease licking after the target appears in

order to avoid shock. Thus, on each trial, animals were required

to make a perceptual decision about whether, or when, a target

stimulus was present. As we have shown, dPEG neurons play an

important role in this process of enhancing relevant target stimuli

and suppressing irrelevant noisy stimuli, consistent with a model

in which the critical behavioral decision is about the presence or

absence of the target.
Our finding of a functional hierarchy in neurophysiological re-

sponses in a pathway leading from core auditory areas to frontal

cortex is consistent with neuroanatomical data. Previous neuro-

anatomical studies have shown ascending projections from the

primary A1 and AAF to both adjacent tonotopic belt areas PPF

and PSF and from these to VP (Bizley et al., 2007; Pallas and

Sur, 1993). Our preliminary neuroanatomical tracing studies sug-

gest that the presumedparabelt areas (VP andPSSC) in turn con-

nect to the dlFC (data not shown). Thus, the functional hierarchy
Neuron 82, 486–499, April 16, 2014 ª2014 Elsevier Inc. 493



Figure 7. Behavior-Induced Response Suppression Is Selectively Weaker at Target Tone Frequency Leading to Enhanced Contrast between

Target and Reference

(A) Response rasters for an example neuron showing frequency tuning for prepassive, active behavior, and postpassive states. In this example, reference stimuli

were quarter-octave bandpass noise, centered at the frequencies shown on the y axis. During behavior, responses were suppressed overall to the reference

noise, but the suppression was weaker for noise centered at the target tone frequency (horizontal dashed line).

(B) Tuning curves, measured from the average firing rate response from each stimulus onset to offset, show a shift in the peak of the tuning curve toward the target

frequency during behavior (red line, target frequency marked by vertical dashed line). Error bars indicate 1 SEM. Spontaneous firing rate in each condition is

indicated by horizontal dashed lines.

(C) Average reference response change between behavior and passive listening for each neuron at target frequency (vertical axis) versus average response

change away from the target frequency (horizontal axis) shows a significant relative enhancement at the target frequency (p < 0.02, jackknifed t test). Black dots

are cells (n = 19/55) that show significant target versus reference enhancement (p < 0.05, jackknifed t test).

(D) Average reference and target responses during passive listening and behavior for the 19 significant cells in (C). Error bars indicate 1 SEM (**p < 0.01,

jackknifed t test).
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observed fromA1 throughPEG todlFCmaybemirrored in neuro-

anatomical pathways and projections between these areas.

We note that in addition to this auditory-to-frontal cortex

pathway, there are other important parallel, linked pathways

that mediate auditory attention and related cognitive processes

involved in learning and decision-making. For example, the pa-

rietal cortex is known to play a key role in attention in tandem

with frontal cortex (Swaminathan and Freedman, 2012). Also,

the striatum is closely linked to both sensory, motor, and pre-

frontal areas (Ding and Gold, 2010) and displays corticostriatal

plasticity that enables encoding and learning of stimulus-

response associations (Kreitzer and Malenka, 2008). A recent

optogenetic study (Znamenskiy and Zador, 2013) has empha-
494 Neuron 82, 486–499, April 16, 2014 ª2014 Elsevier Inc.
sized the role of the auditory-striatal projection in carrying

audio-motor information that drives behavioral choices in audi-

tory discrimination. The relative contributions of these parallel

pathways in auditory attention, learning and behavioral deci-

sion-making remains to be delineated. In this study, our focus

is on attention-driven, state-dependent changes in sensory

tuning of neurons in auditory cortex arising when attention is

focused on specific acoustic features or objects known from

previously learned tasks.

In this study, the enhanced target response was accompanied

by an overall decrease in responsiveness across all stimuli,

regardless of neural tuning (Figure 6). Such a global drop in firing

rate is comparable to that seen earlier in similar experiments in
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the auditory cortex (Atiani et al., 2009; Otazu et al., 2009) and

also in the somatosensory cortex (Castro-Alamancos, 2004;

Fanselow and Nicolelis, 1999). Therefore, while absolute target

firing rates often decreased during behavior, this drop was usu-

ally accompanied by a larger decrease in reference responses.

The smaller decrease in the target response during behavior

enhanced the target response relative to the reference response

by �12% in A1 and by about twice as much in dPEG (21.5%).

This relative enhanced selectivity in the target frequency band

is observed directly in the responses to the narrowband noise

and is consistent with the STRF enhancement at the target fre-

quency reported earlier in A1 (Fritz et al., 2003).

While the magnitude of target enhancement in A1 and dPEG

can be partially explained by BF-TF distance, other factors are

likely to play a role in determining behaviorally-driven effects

that could not be measured significantly in the current data

set. These include sensory properties such as bandwidth tuning

that might predispose neurons to respond preferentially to

narrowband targets or broadband references. Alternatively,

top-down circuits may preferentially modulate a subset of neu-

rons independent of their baseline tuning properties. In contrast

to the sensory areas A1 and dPEG, dlFC did not show an overall

decrease in firing rate during behavior, but rather a change of

�70% (increased or decreased spike rate) that was selective

exclusively for target stimuli.

Previous studies of sensory activity in auditory cortical belt

areas in humans (Woods et al., 2010) and in a variety of other an-

imals including mouse (Geissler and Ehret, 2004; Stiebler et al.,

1997), rat (Polley et al., 2007), bat (Kanwal and Rauschecker,

2007; Suga et al., 1990), birds (George et al., 2008), cat (Dong

et al., 2013; Las et al., 2008; Lee and Middlebrooks, 2013), ferret

(Bizley et al., 2005), and monkey (Kikuchi et al., 2010; Perrodin

et al., 2011) have reported a wide range of complex responses

and receptive fields, generally exhibiting longer response

latencies and more complex response dynamics than A1. How-

ever, some of these studies (particularly those conducted in

anesthetized or awake, quiescent animals) have emphasized

the extensive overlap in response properties in nonprimary fields

and concluded that ‘‘similarities outweigh differences’’ (Egger-

mont, 1998). A few studies of auditory nonprimary areas have

emphasized various differences in aspects of higher-level

representation, including information-bearing parameters in bat

biosonar (Suga et al., 1990), pitch (Bendor and Wang, 2008),

broadband versus narrowband stimuli (Rauschecker et al.,

1995), ‘‘what,’’ ‘‘where,’’ and/or ‘‘who’’ features (Las et al.,

2008; Rauschecker et al., 1995; Wang, 2000), functional classes

of complex signals (Cousillas et al., 2008), gestalt features (Car-

retta et al., 1999), and emotional association and long-term

memory (Sacco and Sacchetti, 2010).

Although studies of sensory tuning in the nonbehaving animal

have provided a wealth of information about auditory cortex, in

order to understand dynamic context-specific cortical process-

ing it is essential to record neuronal responses in the behaviorally

trained and actively behaving animal. To this end, there has also

been considerable interest in describing behavioral and context-

dependent plasticity of cortical receptive fields. Most previous

studies of auditory cortical plasticity have focused on changes

in A1, where auditory experience can have profound effects
by reshaping cortical maps (Polley et al., 2006; Recanzone

et al., 1993; Rutkowski and Weinberger, 2005) and transforming

receptive field properties of neurons in A1 (Atiani et al., 2009;

David et al., 2012; Diamond and Weinberger, 1986; Fritz et al.,

2003, 2005, 2007). The precise form of this plasticity is deter-

mined by the spectral and temporal characteristics of the salient

acoustic stimuli as well as task design, reward structure, motiva-

tion, training history, and state of the animal (Dahmen and King,

2007; Fritz et al., 2012; Weinberger, 2007).

Most relevant to the current study are earlier findings that

cortical plasticity in nonprimary auditory cortical areas may be

different in form, magnitude, or prevalence compared to A1

plasticity (Diamond and Weinberger, 1984; Polley et al., 2006;

Puckett et al., 2007; Weinberger et al., 1984). The present study

builds on a pioneering set of studies that compared receptive

field plasticity in primary and nonprimary fields after classical

conditioning (Diamond and Weinberger, 1984, 1986; Wein-

berger et al., 1984) and compares real-time receptive field plas-

ticity of individual neurons in auditory primary and belt cortex in

animals performing an instrumental task. Our results are also

consistent with a recent study that compared activity across

ferret auditory cortex during a pitch discrimination task (Bizley

et al., 2013). This study found that activity throughout the audi-

tory cortex encoded information about both stimulus acoustics

and the animal’s impending decision, but activity in dPEG

predicted behavioral choice significantly better than activity in

other areas (including primary auditory cortical areas). The

accuracy with which neural activity predicted behavioral choice

increased with time after stimulus onset (Bizley et al., 2013),

consistent with our observation that enhancement in the target

response occurs well after stimulus onset (see Figure 4B,

target). Our results are also in accord with results of another

recent article on behavioral modulation of neural encoding in

primary and nonprimary auditory cortex (Dong et al., 2013). In

agreement with our findings, this study also reaches the conclu-

sion that the difference in representational salience between the

passive and active listening conditions is stronger in higher-

order auditory cortical areas, where they observed higher tem-

poral encoding precision and neural discriminability of the task

stimuli (click trains) during behavior. These behaviorally-driven

changes in the temporal domain in cat nonprimary auditory cor-

tex complement our findings, which demonstrate behaviorally-

driven changes in encoding in a spectral task in ferret auditory

belt cortex.

In conclusion, the response properties of neurons in PEG,

and their rapid plasticity during behavior, are consistent with

a role for PEG as an intermediate cortical stage of attentional

modulation between A1 and dlFC. Like neurons in A1, neurons

in PEG continue to represent the physical characteristics of

incoming acoustic stimuli, responding best to a limited range

of frequencies and displaying behaviorally-driven plasticity

that is strongly dependent on the proximity of the target tone

frequency to the neuron’s BF. At the same time, PEG neurons

share properties with dlFC, representing the behavioral mean-

ing of the sound by substantially enhancing the contrast

between responses to task target and reference stimuli and

hence better encoding the presence or absence of a target.

These dual properties are consistent with a role for PEG as
Neuron 82, 486–499, April 16, 2014 ª2014 Elsevier Inc. 495
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an area of converging bottom-up and top-down influences,

which is functionally intermediate between A1 and dlFC, in a

pathway where sounds are transformed from their acoustics

to their meaning.

EXPERIMENTAL PROCEDURES

Experiments probed the auditory response properties of single neurons in

cortical brain areas of awake ferrets during passive listening and during

performance of a discrimination task. Some data from recordings in primary

auditory cortex (A1, n = 4/12 animals) and dorsolateral frontal cortex (dlFC,

n = 5/5 animals) have been published previously and were reanalyzed for com-

parison with the data collected for this study (David et al., 2012; Fritz et al.,

2003, 2010). All experimental procedures were approved by the University

of Maryland Animal Care and Use Committee and conformed to standards

specified by the National Institutes of Health.

Training Paradigm and Behavioral Tasks

Adult female ferrets (n = 8 for the present study, n = 2 for earlier A1 studies

[Fritz et al., 2003], n = 5 for an earlier dlFC study [Fritz et al., 2010]) were

trained on a pure tone detection task using a conditioned avoidance proce-

dure (Fritz et al., 2003; Heffner and Heffner, 1995). Ferrets could freely lick

water continuously flowing from a spout during a variable number of refer-

ence noise stimuli until they heard a pure tone (warning) target. Animals

were trained to briefly stop licking after tone offset (for a minimum of

400 ms), in order to avoid a mild tail shock. Target carrier frequency varied

between experiments but was held fixed during a single behavioral block.

Reference signals were composed of broadband rippled noise (Klein et al.,

2000) or narrowband noise stimuli.

The level (60–75 dB) and duration of reference and target sounds was the

same in a single experiment. For most of training and all recording sessions,

the stimulus length was 1.0 or 1.5 s (same duration for reference and target

and fixed for a single experiment) with a 1.2 s interstimulus interval. Animals

were trained on the task until they reached criterion, defined as consistent per-

formance for two sessions with >80% hit rate accuracy and <20% false alarm

rate for a discrimination rate >0.65 (Fritz et al., 2003, 2010). During neurophys-

iological recordings, the identical set of reference and target stimuli was pre-

sented while the animal was passively listening and not engaged in a task.

Surgery

To secure stability for electrophysiological recording, a stainless steel head-

post was surgically implanted on the skull. During surgery, ferrets were anes-

thetized with a combination of Ketamine-Xylazine for induction and isoflurane

(1%–2%) for maintenance of deep anesthesia throughout the surgery. Using

sterile procedure, the skull was surgically exposed and the headpost was

mounted using stainless steel screws and bone cement, leaving access

to auditory cortex in both hemispheres. Antibiotics and analgesics were

administered as needed following surgery.

After recovery from headpost implantation (2 weeks), the ferrets were habit-

uated to head restraint in a customized Lucite horizontal cylindrical holder over

a period of 1–2 weeks and then retrained to criterion on the task for an addi-

tional 2–3 weeks while restrained in the holder (Fritz et al., 2003). In addition

to the ten animals that were trained on the task, additional auditory data

were collected from two task-naive control ferrets. These animals received

no behavioral training on the task, but like the other headpost implanted ferrets

also were habituated to head restraint in the holder before physiological

recording commenced.

Neurophysiological Recording

Experiments were conducted in a double-walled, sound-attenuating chamber.

Small craniotomies (1–2 mm diameter) were made over auditory cortex

prior to recording sessions that lasted 6–8 hr. We used high impedance

(2–6 MU) tungsten electrodes (FHC) for the neurophysiological recordings.

A typical recording session used one to four independently moveable

recording electrodes (Alpha-Omega), separated by �500 mm from their near-

est neighbor. Electrodes were advanced until good isolation was found on the
496 Neuron 82, 486–499, April 16, 2014 ª2014 Elsevier Inc.
majority of the electrodes. Single units (one to two neurons per electrode)

were isolated by k-means clustering using custom MATLAB software (David

et al., 2009).

Auditory Field Localization and Connectivity Analysis

Before recording activity in the nonprimary (belt) tonotopic fields of the dorsal

posterior ectosylvian gyrus (dPEG), initial recordings were directed to A1 by

making craniotomies using external skull landmarks (for female ferrets, the

approximate location of the center of A1 was 16 mm anterior to the occipital

midline crest and 12 mm lateral to the midline). Initial measurements of BF

were made using pure tones 100 ms in duration, presented with a 1 s inter-

stimulus interval and randomly varied in frequency to cover the tuning range

of the current recording sites (three to seven octaves). Neurons were then

confirmed to be in A1 based on distinctive physiological characteristics,

such as latency and tuning and by their organization in a characteristic dor-

sal-to-ventral, high-to-low-frequency tonotopic map (Bizley et al., 2005;

Shamma et al., 1993).

The location and extent of the two tonotopic fields in dPEG (PPF and PSF)

(Bizley et al., 2005) was then determined by neurophysiological mapping.

The dorsal border of the tonotopic fields was located by extending the A1

craniotomy on its ventral edge and tracing the tonotopic gradient of A1 best

frequency from high to low along the dorsoventral axis until the gradient

reversed and best frequency started increasing (Figure S1). This A1/dPEG to-

notopic gradient reversal coincided with a graded transition in the response

properties of neurons, with generally longer latencies, greater sustained re-

sponses and weaker envelope phase-locking in dPEG than in A1 (Figure 2),

in agreement with earlier studies (Bizley et al., 2005). As previously described,

the boundary along the dorsoventral axis between themore anterior field (PPF)

and the more posterior field (PSF) was generally marked by another low-fre-

quency zone (Bizley et al., 2005; Nelken et al., 2008).

Consistent with previous work in the anesthetized ferret (Bizley et al., 2005),

we observed similar response properties and behavioral effects in PPF and

PSF in both passive and active behavioral conditions. Thus for the purposes

of the present studywe pooled neurons recorded from these fields into a single

dPEG data set.

We marked the location of our recording sites and auditory cortical bound-

aries by electrolytic lesions on the low-frequency borders of A1 and the adja-

cent tonotopic dPEG fields (see Figure S1, lesion sites 6, 7, and 9). We also

marked the most ventral boundaries of the PEG tonotopic fields with other

adjacent auditory cortical areas in the PEG (VP) at sites where high-frequency

tuning abruptly jumped to low-frequency tuning (see Figure S1, lesion sites 2–5

and 8). Finally, wemarked a region anterior to PPF (Pro-PPF) defined by rapidly

changing BFs and broad tuning (see Figure S1, lesion site 1). Our histology

confirmed the location of these sites and showed that the dorsoventral tono-

topic reversal coincided with the transition from A1 to tonotopic fields PPF

and PSF. Based on the histology, most of our recordings were in A1 and the

two tonotopic fields PPF and PSF, although in a few cases we also recorded

auditory responses in more ventral PEG areas VPc and VPr (caudal and rostral

ventral posterior areas) and in more anterior Pro-PPF.

Stimuli

In a given block of trials, reference sounds used during behavior consisted

either of temporally orthogonal ripple combinations (TORCs) (Klein et al.,

2000) or narrowband noise (NBN, in a smaller number of experiments

n = 55). In all experiments, target sounds used during behavior consisted of

pure tones. TORCs were randomly chosen from a set of 30 TORCs, each

was a five octave wide broadband noise with a dynamic spectrotemporal pro-

file that was the superposition of the envelopes of six temporally orthogonal

ripples. Ripples composing the TORCs had linear sinusoidal spectral profiles,

with peaks equally spaced at 0 (flat) to 1.2 cycles-per-octave; the envelope

drifted temporally up or down the logarithmic frequency axis at a constant

velocity (4–48 Hz) (Depireux et al., 2001; Klein et al., 2000). The five octave

TORCs varied in range over 125 Hz–4 kHz, 250 Hz–8 kHz, or 500 Hz–16

kHz, chosen to span the BFs of currently recorded neurons.

Narrowband noise (NBN) reference stimuli were constructed by logarithmi-

cally tiling a range of frequencies encompassing the BFs of neurons at the

current recording sites with noise samples having either half, quarter, or eighth
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octave bandwidth, and hence the NBN stimuli varied in center frequency. Each

of the NBN stimuli were constructed by summing 10 to 100 tones logarithmi-

cally spaced in the desired frequency bands, rather than filtering white noise.

The number of unique noise bands depended on the overall frequency range

probed (typically four to five octaves) and the bandwidth of the noise band

chosen for each experiment, and no systematic effects were observed with

changes in the bandwidth of the individual noise samples.

Data Analysis

Basic auditory tuning properties were measuring using standard techniques

that have been described elsewhere (David et al., 2009). Best frequency was

determined by measuring the neural response to a sequence of 50–300 tones

with randomly varying frequency (100 ms duration, 1 s intertone interval).

A Gaussian function was fit to the average spike rate during 100 ms after

tone onset, as a function of tone frequency. Best frequency was taken to be

the mean of that Gaussian, and frequency tuning bandwidth was measured

as its width at half-height. Response latency was computed by measuring

the peristimulus time histogram (PSTH) response following the onset of all

tones, binned at 1 ms. For other tuning properties, spectrotemporal receptive

fields (STRFs) were measured from the response to passively presented

TORCs by reverse correlation (Klein et al., 2000). Only neurons with signifi-

cantly tuned STRFs (phase-locking index >0.3) were analyzed for these tuning

measurements. The STRF was positively rectified and averaged over time.

Response duration, similarly, was measured as the width at half-height of

the rectified STRF after averaging over frequency.

Neural responses to task stimuli were measured by computing the PSTH

response to stimulus sound categories, averaging across all reference noise

sounds or target tones. For consistent analysis, only the first 1.0 s of

responses was considered, even when longer stimuli were used. Responses

were binned at 30 bins/s and SEM PSTH was computed by jackknifing.

A neuron was considered to show auditory responses if the PSTH for

either stimulus class was significantly modulated from baseline firing rate

(measured over 500 ms preceding sound onset) during at least two time

bins (p < 0.05, jackknifed t test). For within-cell significance testing, jackknif-

ing was performed by successively excluding different subsets of experi-

mental trials.

A normalized response was computed by subtracting the baseline firing

rate from the PSTH, dividing by the magnitude and sign of maximum modu-

lation of the PSTH from the spontaneous baseline (either enhancement

or suppression during behavior or during passive listening), and averaging

over time (0–1 s following stimulus onset). Normalization by the sign of the

neural response was intended primarily to account for the large number of

auditory-responsive dlFC neurons (108/266) whose firing rate was decreased

from baseline by target sounds (Fritz et al., 2010). Task-dependent changes

were computed as the difference in the normalized response between

behavior and passive listening conditions. This produced the percent change

in response as a fraction of the maximum stimulus modulation. The change

was considered significant if the average spike rate was significantly different

between passive listening and behavior across trials (p < 0.05, jackknifed

t test).

In order to quantify the overall enhancement of target responses relative

to reference responses, the target enhancement index was computed as

the difference between task-dependent changes for target and reference

sounds,

D= ðrtar;active � rtar;passiveÞ � ðrref;active � rref;passiveÞ
A value of D > 0 indicated that target responses increased relative to reference

responses during behavior, even if the overall response to both stimuli

decreased during behavior. Population-level significance was tested by a

jackknifed t test in which successive (5%) subsets of neurons were excluded

before calculating the relevant statistic.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and can be found with this

article online at http://dx.doi.org/10.1016/j.neuron.2014.02.029.
AUTHOR CONTRIBUTIONS

S.A., S.V.D., and J.B.F. designed behavioral physiological experiments. S.A.,

S.V.D., D.E., M.L., and J.B.F. conducted neurophysiological recordings,

S.V.D. and S.A. analyzed data. J.B.F., S.V.D., and S.A.S. evaluated results.

S.R.-S. processed all histological tissue, analyzed neuroanatomical results,

and made neuroanatomical figures. S.V.D. made all other figures. S.V.D.,

S.A., S.A.S., and J.B.F. wrote the manuscript.

ACKNOWLEDGMENTS

This research was funded by grants from the US National Institutes of Health

(R01 DC005779, R00 DC010439) and a grant from the Office for Naval

Research (N000141210855).

Accepted: February 14, 2014

Published: April 16, 2014

REFERENCES

Ahissar, M., Nahum, M., Nelken, I., and Hochstein, S. (2009). Reverse hierar-

chies and sensory learning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364,

285–299.

Atiani, S., Elhilali, M., David, S.V., Fritz, J.B., and Shamma, S.A. (2009). Task

difficulty and performance induce diverse adaptive patterns in gain and shape

of primary auditory cortical receptive fields. Neuron 61, 467–480.

Bendor, D., and Wang, X. (2008). Neural response properties of primary,

rostral, and rostrotemporal core fields in the auditory cortex of marmoset mon-

keys. J. Neurophysiol. 100, 888–906.

Bizley, J.K., Nodal, F.R., Nelken, I., and King, A.J. (2005). Functional organiza-

tion of ferret auditory cortex. Cereb. Cortex 15, 1637–1653.

Bizley, J.K., Nodal, F.R., Bajo, V.M., Nelken, I., and King, A.J. (2007).

Physiological and anatomical evidence for multisensory interactions in audi-

tory cortex. Cereb. Cortex 17, 2172–2189.

Bizley, J.K., Walker, K.M.M., Nodal, F.R., King, A.J., and Schnupp, J.W.H.

(2013). Auditory cortex represents both pitch judgments and the correspond-

ing acoustic cues. Curr. Biol. 23, 620–625.
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