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Spectrotemporal Contrast Kernels for Neurons in Primary
Auditory Cortex
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Auditory neurons are often described in terms of their spectrotemporal receptive fields (STRFs). These map the relationship
between features of the sound spectrogram and firing rates of neurons. Recently, we showed that neurons in the primary fields of
the ferret auditory cortex are also subject to gain control: when sounds undergo smaller fluctuations in their level over time, the
neurons become more sensitive to small-level changes (Rabinowitz et al., 2011). Just as STRFs measure the spectrotemporal
features of a sound that lead to changes in the firing rates of neurons, in this study, we sought to estimate the spectrotemporal
regions in which sound statistics lead to changes in the gain of neurons. We designed a set of stimuli with complex contrast profiles
to characterize these regions. This allowed us to estimate the STRFs of cortical neurons alongside a set of spectrotemporal contrast
kernels. We find that these two sets of integration windows match up: the extent to which a stimulus feature causes the firing rate
of a neuron to change is strongly correlated with the extent to which the contrast of that feature modulates the gain of the neuron.
Adding contrast kernels to STRF models also yields considerable improvements in the ability to capture and predict how auditory
cortical neurons respond to statistically complex sounds.

Introduction
One of the central questions that we ask about sensory neurons is
what stimulus features they encode in their spike trains. When
characterizing neurons throughout the auditory pathway, mod-
elers and electrophysiologists have long used the spectrotemporal
receptive field (STRF) to answer this question (Aertsen et al.,
1980; Aertsen and Johannesma, 1981; deCharms et al., 1998;
Klein et al., 2000; Theunissen et al., 2000; Escabi and Schreiner,
2002; Miller et al., 2002; Fritz et al., 2003; Linden et al., 2003; Gill
et al., 2006; Christianson et al., 2008; Gourévitch et al., 2009;
David et al., 2009). The success of STRFs at this task, however, has
been somewhat limited (Sahani and Linden, 2003; Machens et al.,
2004), necessitating the development of nonlinear extensions,
such as adding input nonlinearities (Ahrens et al., 2008b), output
nonlinearities (Atencio et al., 2008; Rabinowitz et al., 2011), feed-
back kernels (Calabrese et al., 2011), simplified second-order in-
teraction terms (Ahrens et al., 2008a), and multiple feature
dimensions (Atencio et al., 2008).

One reason for the limited predictive power of the STRF is that
the encoding of stimulus features by auditory neurons is modu-

lated by stimulus context (Blake and Merzenich, 2002; Valentine
and Eggermont, 2004; Ahrens et al., 2008a; Gourévitch et al.,
2009). For neurons in the mammalian primary auditory cor-
tex (A1), the statistics of recent stimulation are a major mod-
ulatory influence on the encoding of sound. We recently
described a gain control process that is in place by this stage of
the auditory pathway (Rabinowitz et al., 2011): neurons in
ferret auditory cortex adjust their gain according to the con-
trast of sound stimulation. When sounds, on average, only
change in level by a small amount over time, the neurons scale
up their sensitivity to the small fluctuations in sound level.
Other authors have observed similar compensatory effects
when changing stimulus statistics, from the auditory periph-
ery (Joris and Yin, 1992) to the midbrain (Rees and Møller,
1983; Kvale and Schreiner, 2004; Dean et al., 2005; Nelson and
Carney, 2007; Dahmen et al., 2010) and the higher auditory
pathway (Nagel and Doupe, 2006; Malone et al., 2010).

Just as STRFs estimate which features of a spectrotemporally
complex stimulus drive a neuron to spike, we might ask a similar
question of gain changes. What features of a spectrotemporally
complex stimulus drive a neuron to change its gain? Our previous
work demonstrated, at a coarse, population level, that gain
changes are predominantly driven by contrast in sound fre-
quency bands that are local to the best frequencies (BFs) of cor-
tical neurons. However, we do not know how this dependency
operates on a neuron-by-neuron basis or what its relationship is
to the STRFs of individual neurons.

To answer these questions, we recorded from neurons in the
primary auditory fields of the anesthetized ferret, while present-
ing a set of stimuli with complex patterns of contrast. For each
neuron, we determined the spectrotemporal window within
which sound contrast informs the gain of that neuron. We did
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this by extending the notion of the STRF
and estimating a set of “gain receptive
fields,” i.e., spectrotemporal kernels for
stimulus contrast. This class of contrast
kernel models extends the linear–nonlin-
ear (LN) framework of models by captur-
ing the modulation of the input/output
functions of neurons by patterns of stim-
ulus statistics.

Several possibilities could have arisen.
The gain of neurons may be a function of
the sound statistics in a broad or a narrow
set of frequency bands and may depend
only on the statistics within the short time
windows of STRF or on those over longer
periods. Our results reveal the relation-
ship between the range of stimulus fea-
tures that auditory cortical neurons
encode and the range of stimulus statistics
that modulate this encoding.

Materials and Methods
Animals. All animal procedures were approved
by the local ethical review committee and per-
formed under license from the United King-
dom Home Office. Full surgical procedures are
provided by Bizley et al. (2010). Briefly, three
female adult pigmented ferrets were chosen for
electrophysiological recordings under ket-
amine (5 mg � kg �1 � h �1) and medetomidine
(0.022 mg � kg �1 � h �1) anesthesia. Bilateral
extracellular recordings were made in the two
auditory cortices using silicon probe elec-
trodes (Neuronexus Technologies) with 16 sites on a single probe,
vertically spaced at 50 �m. Spikes were sorted offline using spikemon-
ger, an in-house software package. Stimuli were presented via earphones,
as described by Rabinowitz et al. (2011).

Stimuli. The main stimulus used was a variant of the dynamic random
chord (DRC) stimuli presented by Rabinowitz et al. (2011), which we
define here as random contrast DRCs (RC-DRCs). As with ordinary
DRCs, RC-DRCs comprise a sequence of chords, composed of tones
whose levels were drawn from particular distributions. For these RC-
DRCs, we used NF � 23 pure tones, with frequencies log-spaced between
flow � 500 Hz and fhigh � 22.6 kHz at 1⁄4 octave intervals. The levels of the
tones were changed every 25 ms, with 5 ms linear ramps between chords.
As in the study by Rabinowitz et al. (2011), the amplitude of each tone
was always non-zero.

The major distinguishing feature of RC-DRCs is the organization
of these chords into segments of several seconds duration. In each seg-
ment, the distribution of levels for each of the NF bands had different pa-
rameters. A random subset of Nhigh of the NF tones had their levels drawn
from a high-contrast (half-width wL � 15 dB; SD �L � 8.7 dB; contrast c �
92%) uniform level distribution, whereas the remaining Nlow � NF � Nhigh

tones had their levels drawn from a low-contrast (wL � 5 dB; �L � 2.9 dB;
c � 33%) uniform level distribution. Both tone distributions had mean level
�L � 40 dB SPL; these are shown in Figure 1C. By virtue of the 3 s duration,
each segment consisted of a sequence of 120 chords, sufficient for a
rough approximation of the output nonlinearity during that contrast
condition (as explained below).

To explore as large a region of contrast space as possible, between NS �
80 and NS � 120 segments were presented at each electrode penetration.
Two types of segment were necessary to establish baselines for gain mea-
surements: one in which all tone distributions were low contrast, and one
in which all were high. Given the importance of these two baseline con-
ditions, nine of the NS segments were reserved for each. The remaining
segments all had a randomized partition of tones into Nhigh � 5 high-
contrast bands and Nlow � 18 low-contrast bands, as described above.

Thus, the set of segments provided an ensemble of contrast conditions in
an analogous way to how an ordinary DRC would provide an ensemble of
tone level conditions.

The segments were packaged into individual RC-DRC sequences,
each consisting of 12 segments. The first segment of each sequence
was 5 s in duration, so that the first 2 s of each stimulus presentation
could be discarded. This was necessary because units often showed
transient responses to the onset of each DRC sequence that depended
on the duration of silence since the end of the last sequence presen-
tation (typically 1–2 s). From each 3 s segment, the first 0.5 s of data
was set aside for the analysis of temporal contrast kernels (TCKs),
with the remaining 2.5 s of data used to fit spectral contrast kernels
(SCKs). The 38 s sequences were presented 10 times each, randomly
interleaved.

Unit selection criteria. Only units that modulated their firing rate in
response to the RC-DRCs in a reliable, repeatable manner were included
for analysis. This was measured via the noise ratio (NR; Sahani and
Linden, 2003; Rabinowitz et al., 2011) for the peristimulus time histo-
gram (PSTH) of each unit:

noise ratio �
noise power

signal power
�

total variance � explainable variance

explainable variance

(1)

ThePSTHwasbinnedat25ms,withbinsoffsetbybetween0and25mstoallow
for response latency. The offset was chosen on a unit-by-unit basis to minimize
the NR. This same offset was used to bin all PSTHs throughout the study; fixing
offsets at 10 ms produced similar results. The maximum admitted NR was 40
(estimatedacrossthewholeensembleofstimuli);unitswithNR�40, i.e.,whose
explainable variance was less than �2.5% of the total variance, were excluded
from analysis. Models were evaluated while taking NR into consideration (see
below).

Notation. We use the following notation throughout this paper. Each
DRC stimulus grid is uniquely identified by a matrix (i.e., two-tensor),

A

B

C D

Figure 1. Stimuli used to estimate contrast kernels and their statistics. A, Schematic of an RC-DRC stimulus. The stimulus
comprises a sequence of chords, which change every 25 ms. The elements of the chords are pure tones, whose levels are drawn from
one of the distributions shown in C. The color grid shows the sound level (Ltf) of a particular tone frequency at a particular time. B,
The 38 s DRC stimulus shown in A comprises 12 segments in which the contrast in different frequency bins, �tf, is either high (red)
or low (yellow). C, Tone level distributions for low (yellow) and high (red) contrast segments. D, Level as a function of time for the
2.4 kHz tone over a 9 s period, i.e., a cross-section of A. This shows the transition from a segment in which the level distribution of
this tone was low contrast (yellow), to a segment in which it was high contrast (red), to a third segment in which it was low contrast
again (yellow).
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Ltf, in which each component of the matrix describes the sound pressure
level (in dB SPL) of a tone with frequency f at time t. To simplify the
notation used for fitting STRFs below, we define the three-tensor Ltfh as a
time-lagged version of Ltf, where h is a history index, and the elements
of Ltfh are defined as the elements of Ltf from h time bins in the past, i.e.,
L(t � h),f. The (trial-averaged) response is denoted as yt, and any model
predictions of this response are denoted ŷt. Once the STRF was fitted, it
was fixed; the output of the STRF model for a given unit is denoted xt

throughout.
As with the tone levels, the contrast profile of the stimulus is de-

noted by �tf; this matrix (or two-tensor) defines the contrast of the
level distribution for the tone at frequency f and time t. Because only
two distributions were presented, we define � � 0 for the low-
contrast distribution (Fig. 1 B–D, yellow) and � � 1 for the high-
contrast distribution (Fig. 1 B–D, red). Similarly, the recent history
of contrast is denoted by �tfh, whose elements are defined by the
time-lagged contrast profile, as �tfh � �(t � h),f .

Model structure: STRFs and the LN model. The models developed in
this study begin with STRFs. These were estimated by correlating the
stimulus history, Ltfh, with the spike PSTH, yt, at a 25 ms resolution. This
involved fitting the general model:

ŷt � �
f,h

Ltfh . kfh (2)

STRFs that are separable in frequency, f, and time history, h, often pro-
vide better fits than fully inseparable STRFs (Linden et al., 2003; Simon et
al., 2007; Ahrens et al., 2008a; Rabinowitz et al., 2011). This was generally
the case for this dataset as well. Thus, we assume kfh � kf V kh, where V is
the outer product. This is illustrated in Figure 2B.

We also fitted the majority of the models presented here using insep-
arable kernels as the first stage of the LN and contrast kernel models.
Prediction scores for these models (evaluated using Eq. 23 below) were
typically 2–5 percentage points lower than the corresponding models
fitted using separable kernels. Nevertheless, the general trends as pre-
sented in this study were the same (data not shown).

For comparison with the contrast kernel models developed below, the
linear STRF was refined by fitting a static LN model to the responses of
the units (Chichilnisky, 2001; Simoncelli et al., 2004). This involved pass-
ing the output of the linear model, xt, through a static (i.e., memory-less),
nonlinear function F, such that ŷt � F[xt]. As per Rabinowitz et al.
(2011), a logistic curve (sigmoid) was fitted to the data via gradient
descent:

ŷt � a �
b

1 � exp� � �xt � c

d �� (3)

The parameters a through d are illustrated in Figure 2C. They can be
interpreted as follows: a, as the minimum firing rate; b, as the output
dynamic range; c, as the stimulus inflection point; and d, as the (inverse)
gain.

Model structure: contrast kernels. To consider how the ongoing contrast
profile of the stimulus affects the coding of a cortical neuron, we ex-
tended the static LN model above by rendering each of the four param-
eters, a– d, depending on the recent history of contrast:

ŷt � a��tfh� �
b��tfh�

1 � exp� � �xt � c ��tfh�

d ��tfh�
�� (4)

A

B C

D E

Figure 2. Schematic of the contrast kernel model. A, The relationship between stimulus and
neuronal response. The sound input is represented by its spectrogram, Ltf (top), and by its
contrast profile, �tf (bottom). As in a standard LN model, the neural response is determined by
convolving the spectrogram with a linear spectrotemporal kernel (kfh) and passing the output of
this operation (xt) through a static output nonlinearity (here, a 4-parameter sigmoid, denoted
by the blue curve) to produce the predicted spike rate (ŷt). The model developed here extends
this by allowing each of the four parameters of the output nonlinearity (a– d, as shown in C) to
change over time, depending on the statistics of recent stimulation. The evolution of each
parameter � � {a, b, c, d} over time is determined by convolving the contrast profile of the
sound, �tf, with a linear contrast kernel, �fh

(�). The effects of this on the shape of the output
nonlinearity are illustrated in D and E. B, All STRFs and contrast kernels are assumed to be
separable in frequency and time, such that kfh � kf V kh, and �fh

(�) � �f
(�) V �h

(�). This allows
contrast kernels to be fitted in two stages: (1) the spectral component (SCKs) in Figures 3– 6 and
(2) the temporal component (TCKs) in Figure 7. C, The parameters of a sigmoidal static nonlin-
earity: a, the minimum firing rate; b, the output dynamic range; c, the stimulus inflection point;
d, the (inverse) gain. D, An illustration of the effect of a contrast kernel for the nonlinearity
parameter a, which sets the minimum firing rate of the output nonlinearity. Top left, A contrast
kernel �fh

(a) is shown. Top right, The contrast profile of an example stimulus. Middle right, As a
result of changing contrast, the parameter a changes with time. Bottom right, The effective
shape of the output nonlinearities at different times attributable to the changing value of a.

4

These shifts would be combined with the contrast-dependent changes to the other non-
linearity parameters, b, c, and d, such as shown in E. E, Effect of a contrast kernel for the
nonlinearity parameter d, which sets the (inverse) gain of the output nonlinearity. This
neuron decreases its gain when there is high contrast anywhere within a relatively broad
region demarcated by �fh

(d).
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There is considerable freedom in Equation 4 to specify the form of the
functions a[�tfh] through d[�tfh]. The simplest assumption, which we
consider here, is that these are linear functions of �tfh. This is motivated
by three factors: (1) symmetry with the STRF; (2) a linearization of the
results of Rabinowitz et al. (2011); and (3) simplicity. The full model
takes the following form:

ŷt � at �
bt

1 � exp� � �xt � ct

dt
�� (5)

at � a0 � a1 � �
f,h

� fh
�a�. �tfh� (6)

bt � b0 � b1 � �
f,h

� fh
�b�. �tfh� (7)

ct � c0 � c1 � �
f,h

� fh
�c�. �tfh� (8)

dt � d0 � d1 � �
f,h

� fh
�d�. �tfh� (9)

For brevity of notation, we use the generic parameter � to denote each
of the four nonlinearity parameters, a– d. Thus, Equations 6 –9 can be
written as follows:

�t � �0 � �1 � �
f,h

� fh
�� �. �tfh� (10)

Because the profile of recent contrast, �tfh, varies with time, so each
parameter � � {a, b, c, d} of the output nonlinearity varies with time.
These changes are mediated via a weighted sum of the contrasts in
different frequency bands, provided by the term �fh

(�), which we refer
to as the spectrotemporal contrast kernel (STCK) for the parameter �.
The form of this model is illustrated in Figure 2 A.

As with the STRF, the number of parameters of the contrast kernels
can be dramatically reduced by assuming that they are separable in
frequency and time history. Thus, we constrained �fh

(�) � �f
(�) V �h

(�),
such that the STCK could be decomposed into the outer product of a
SCK and a TCK. We took further advantage of this property by fitting
the SCK and TCK separately.

The full model of Equations 5–9 has a large number of parameters,
numbering 4 	 (NF 
 NH 
 1) parameters (there being redundancy
between �fh

(�) and �1, as discussed below), in addition to the NF 
 NH

parameters of the separable STRF. We made several assumptions to
reduce the number of parameters. First, not all of the nonlinearity
parameters {a, b, c, d} need to be contrast dependent. For such pa-
rameters �, we set �1 � 0, such that �t � �0. Next, it is possible that
changes to some of these parameters are the result of the same phys-
iological process. This would allow us to assume a shared contrast
kernel between pairs of parameters � and ��, with �fh

(���) � �fh
(�) � �fh

(��).
For brevity, we assign the following notation to individual models. The

full model, wherein all nonlinearity parameters have separate contrast
kernels, is denoted as the a/b/c/d model. When a nonlinearity parameter
is assumed to be contrast independent, we omit the corresponding letter
from the name. Thus, b does not change with contrast in the a/c/d model.
Finally, we concatenate letters when they share the same contrast kernel.
Thus, in the a/cd model, �fh

(a)  �fh
(c) � �fh

(d) � �fh
(cd).

One special case is worth particular mention. The results of Rabi-
nowitz et al. (2011) demonstrate that the primary effects of changing
contrast lie in changes to the gain, via the parameter d, with some
correlated changes in threshold, via the parameter c. These effects can
be most simply captured by the cd model, wherein the nonlinearity

parameters a and b are contrast independent, whereas c and d share a
single contrast kernel. The cd model thus takes the following form:

ŷt � a �
b

1 � exp� � �xt � ct

dt
��

ct � c0 � c1. �
f,h

� � fh
�cd�. �tfh�

dt � d0 � d1. �
f,h

� � fh
�cd�. �tfh� (11)

Fitting procedures. With the assumption that contrast kernels could be
separated into spectral (SCK) and temporal (TCK) components, we first
fitted SCKs. We limited the TCKs to cover 500 ms of history; as a conse-
quence of both this and the segmented structure of the RC-DRCs, the
values of the parameters at through dt would be constant from 500 ms
after each segment transition until the next segment transition. We thus
fitted SCKs by using only the last 2.5 s of data from each segment and the
following set of equations:

ŷt � at �
bt

1 � exp� � �xt � ct

dt
�� (12)

�t � �0 � �1 � �
f

� f
�� �. �tf� (13)

To reduce the time taken to fit models, we took further advantage of
the segmented nature of the RC-DRCs. Because �tf does not change
with time within a segment k, the set of contrast values can be sum-
marized as a matrix skf, capturing the contrast in segment k of fre-
quency band f. Rather than fitting the parameters directly to the
entire, trial-averaged training dataset (with NT � 8000), the set of
(STRF-weighted) stimulus/response pairs (xt, yt) within each segment
was divided equally into 20 bins along the x-axis (Chichilnisky, 2001;
Simoncelli et al., 2004). This reduced the size of the dataset fivefold
and enabled us to confirm that the sigmoid parameterization was
appropriate (see Fig. 5, middle column). For bin j in segment k, we
denote the bin center as x� jk and the mean firing rate y� jk. This resultant
model was considerably more efficient to fit:

ŷjk � ak �
bk

1 � exp� � �x� jk � ck

dk
�� (14)

�k � �0 � �1 � �
f

� f
�� �. skf� (15)

This reduction in the size of the dataset was necessary for the boot-
strapping and Markov Chain Monte Carlo (MCMC) analyses (ex-
plained below). On a subset of units, we confirmed the validity of this
approximation by comparison with fits to Equations 12 and 13. These
produced near identical results.

Equations 13 and 15 each contain a redundancy between �1 and �h
(�).

We therefore constrained each SCK to sum to unity, i.e., �f �f
(�) � 1. For

the purposes of including priors (see below), we defined 	f
(�) as the un-

normalized SCK for �, such that

� f
�� � �

	 f
�� �

�f � 	 f �
�� �

(16)

To fit TCKs for each unit, we returned to the first 0.5 s of data that
followed each segment transition. We fixed the values of �0 and �1 for
each �, together with the SCKs, �f

(�), that had already been fitted for each
unit. To ensure consistency with Equation 13, we also constrained each
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TCK to sum to unity, i.e., �h�h
(�) � 1, by defining 	h

(�) as the unnormal-
ized TCK for �, via

�h
�� � �

	h
�� �

�h� 	h�
�� �

(17)

Because TCKs could only be fitted to the periods immediately after each
segment transition, there were limited data available to fit the TCK pa-
rameters. One consequence of this was that allowing the coefficients of
�h

(�) to take on any value (subject to a Gaussian prior) resulted in consid-
erable overfitting (see the ℜ performance in Fig. 7G). Thus, TCKs were
fitted with the constraint that all coefficients be positive.

The dataset for each unit was subdivided randomly into training
(90%) and prediction (10%) subsets. All parameter fitting took place on
the training dataset. Separable STRF models were first fitted to the whole
training dataset using maximum likelihood, ignoring the segmented
structure of the RC-DRCs. STRFs were fixed thereafter. Next, maximum
a posteriori (MAP) estimates of the nonlinearity and contrast kernels
were estimated all together, using gradient descent. For each model, the
log posterior probability was calculated, as well as its derivatives with
respect to all the parameters. Minimization of the negative log posterior
was performed using the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS-B) algorithm (Zhu et al., 1997), via SciPy (http://
www.scipy.org/). This assumed that xt, i.e., the output of the linear STRF
model, was observed. The log likelihoods (and the log posteriors) were
only convex with respect to some parameters; the gradient descent algo-
rithm thus needed to be initialized at a number of different initial con-
ditions to reduce the chances of settling in local minima. Forty different
starting locations were chosen by random draws from the prior distribu-
tions over the parameters, with an additional initialization condition at
the mean of the priors (see below). Generally, at least half of these repeats
converged to the same (best) fixed point.

In principle, we could have merged the STRF fitting with the nonlin-
earity/contrast kernel fitting and minimized a single objective function.
However, optimizing all parameters proved computationally impracti-
cal. Alternatively, we could have iterated between optimizing the nonlin-
earity/contrast kernel parameters (with the STRF fixed) and optimizing
the STRF (with the other parameters fixed). However, we observed that
this iterative procedure typically made little to no difference to prediction
scores, and STRFs did not noticeably change over successive iterations.
Because the focus here is not on the STRF but on the contrast-dependent
changes in output nonlinearities, no successive refinements to STRFs
were pursued beyond the initial fit.

A major goal of this work was to characterize the contrast kernels for
cortical neurons. This involves estimating not only the best parameter values
for �f

(�) but also their error bounds. In addition to the MAP estimates, which
pinpoint the mode of the posterior parameter distributions, we approxi-
mated the shape of these posterior distributions by sampling from them
using MCMC methods. MCMC models were constructed in Python, using
the PyMC package (Patil et al., 2010). Chains were initialized at the MAP
parameter values and advanced using a Metropolis–Hastings step method. A
barrage of diagnostics, including trace plots, Geweke’s diagnostic (Geweke,
1992), and autocorrelation analyses, was used to assess convergence and
mixing. From these diagnostics, we found that minimum chain lengths of
120,000 samples, with a 20,000-sample burn-in and 20	 thinning, were
sufficient for a reasonable characterization of the posteriors. As always for
MCMC methods, longer and parallel chains would improve the representa-
tion of the posteriors; nevertheless, the observed results satisfied the above
diagnostics and are therefore used here to provide an approximate measure
of the error bounds on the contrast kernels. When illustrated in figures, and
for computing statistics, these error bounds are summarized in terms of
credible intervals, a Bayesian analog of confidence intervals (Carlin and
Louis, 2009).

Priors on nonlinearity parameters. Priors were chosen for simplicity of
form rather than analytic tractability. From Equations 6 –9, we see that
each parameter � � {a, b, c, d} is the sum of a contrast-independent term,
�0, and a contrast-dependent term, weighted by �1. Rather than placing
priors directly on these terms, it was more convenient to reparameterize
the model as follows.

The contrast in segment k and frequency f, skf, could only take on
binary values. In the all-low-contrast segment, when skf � 0 @ f, it follows
from Equation 15 that �k � �0. In the all-high-contrast segment, when
skf � 1 @ f, we use the fact that the contrast kernel, �f

(�), is normalized
(from Eq. 16) to find that �k � �0 
 �1. Defining these two values as �low

and �high, respectively, we can rewrite Equation 15 as follows:

�k � � low � ��high � �low���
f

�f
�� �. skf� (18)

Thus, the parameters {alow, blow, clow, dlow} describe the output nonlin-
earity in the all-low-contrast segment, and the parameters {ahigh, bhigh,
chigh, dhigh} describe the output nonlinearity in the all-high-contrast seg-
ment. In each segment, the value of �k typically lies between �low and
�high, depending on the projection of skf onto �f

(�) (although �k can
take on more extreme values when some of the coefficients of �f

(�) are
negative).

For each �, identical priors were placed on each of �low and �high. The
respective priors were primarily chosen to satisfy three purposes: (1) to
enforce a set of hard constraints, namely that a, b, and d all be positive; (2)
to apply some regularization, i.e., to ensure that b, c, and/or d did not
grow excessively large; and (3) to provide a suitable set of initial condi-
tions for MAP fitting. As a result, the priors were relatively broad, with
data-driven hyperparameters.

For each unit, we defined a set of intermediate statistics on the binned
stimulus–response data (x� jk, y�jk):

ymin � min
j,k

y� jk xmin � min
j,k

x� jk

ymax � max
j,k

y� jk xmax � max
j,k

x� jk

yrange � ymax � ymin xrange � xmax � xmin

xmean �
1

NjNk
�
j,k

x� jk

where Nj is the number of bins (here, 20), and Nk � NS, the number of
segments.

In turn, the priors P(�low) � P(�high) were defined via

a low, ahigh � Exp�ymin � 0.05yrange� (19)

b low, bhigh � Exp�2yrange) (20)

c low, chigh � Normal�xmean, xrange
2 � (21)

d low, dhigh � Exp�xrange/20� (22)

where exponential distributions are given in terms of their scale pa-
rameters, 
.

The L-BFGS-B algorithm used to minimize the negative log posterior
allows the explicit specification of parameter boundary values; for the
exponentially distributed variables, a lower bound of 1 	 10 �15 was
provided.

Finally, for those models in which only a subset of the nonlinearity
parameters were contrast dependent, �1 � 0 was enforced, such that
�high � �low.

Priors on contrast kernels. As discussed in Results, three different ap-
proaches to the values of SCKs were taken: (1) in the first approach, the
kernels were allowed to take any real value; (2) in the second approach,
they were constrained to be positive; and (3) in the third approach, they
were fixed at particular values.

Priors were placed on the coefficients of the unnormalized contrast
kernels, 	f

(�). Because these were normalized via Equation 16 to give �f
(�),

the scale of the respective priors was not important.
When real-valued kernels were used, the prior on �(�) was chosen to

be a spherical Gaussian, with 	f
(�) � Normal(0, 0.1 2). When positive-

valued kernels were used, the prior on each coefficient was chosen as
	f

(�) � Exp(0.1). In this latter situation, as for the positive nonlinear-
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ity parameters, the L-BFGS-B algorithm bounded each coefficient
below at a value of 1 	 10 �15.

When real-valued contrast kernels were used, it was possible for the
denominator of Equation 16 to approach zero, giving untenable val-
ues of �f

(�). As a result, the minimization algorithm occasionally
yielded zero-division errors. When this occurred, the algorithm was
reset with a new initial value. This discontinuity also meant that the
algorithm was more likely to get stuck in local minima of the negative
log posterior, requiring a larger number of repeated fittings from
random initial conditions.

Model success. To compare different models for the firing rate be-
havior of auditory cortical neurons, we made use of the strategy de-
veloped by Sahani and Linden (2003). For each unit, the amount of its
total response variance that can be explained is bounded by the signal
power (SP). Model success should therefore be measured as the per-
centage of signal power explained (%SPE). This is the percentage
reduction in the SP from fitting the model and is equivalent to the
following:

%SPE �
Var�yt� � Var�yt � ŷt�

SP
� 100% (23)

By subdividing the data for each unit into a training and prediction
dataset, one can obtain two values for %SPE for that unit. The %SPE
from the training data is inflated as a result of overfitting to the noise in
the training data. Thus, %SPEtraining provides an upper bound for the
model performance. The %SPE from the prediction data is expected to
be lower, because it tests the generalizability of the model to new data.
Thus, %SPEprediction provides a lower bound for the model performance.

Because these two measures diverge as a function of NR, a suitable
method for measuring the predictive power of the model from the pop-
ulation data is to extrapolate from the two sets of estimates of model
success above to those for a hypothetical zero-noise neuron (Sahani and
Linden, 2003; Ahrens et al., 2008a). The resultant upper and lower esti-
mates bound the true predictive power of the model, i.e., that which
would be obtained in the limit of zero noise. Bounds of model prediction
power reported here come from linear extrapolations to the zero case.
When only a single value is cited (as in the figures), this is the lower
bound.

To correct against sampling biases, we cross-validated the results
across 10 different partitions of the data. The %SPE values reported here
are medians across these 10 partitions. The same set of partitions were
used for fitting all models to the same unit.

Results
Our primary objective was to determine the spectrotemporal
window within which changes in stimulus contrast inform
changes in neuronal gain. To do so, we designed a set of stimuli,
known as RC-DRC sequences (Fig. 1). This provided an ensem-
ble of stimulation conditions, each with a different profile of
contrast statistics.

We recorded from 168 units in the A1 and anterior auditory
field (AAF) of three anesthetized ferrets, while presenting RC-
DRCs. These areas were identified on the basis of their location
on the middle ectosylvian gyrus and the tonotopic organization,
which is organized approximately dorsoventrally across the gyrus
(Nelken et al., 2004; Bizley et al., 2005). Among this set of units,
we identified 77 units that responded reliably to the RC-DRCs, as
measured via a maximum noise level criterion (see Materials and
Methods).

Spectral contrast kernels
We constructed a class of models to analyze the responses of the
units to the RC-DRCs (Eqs. 5–9; Fig. 2). These build on LN
models, which have been used previously to characterize the re-
lationship between stimuli and neuronal responses (Chichilnisky,
2001; Simoncelli et al., 2004). As in a standard LN approach, we

modeled the responses of units as a two-stage process: (1) a re-
duction of the dimensionality of stimulus space, by filtering the
ongoing (log) spectrogram through an STRF; and (2) a nonlinear
transformation stage, by passing the filtered stimulus through a
static output nonlinearity. Our models expanded on this schema
by allowing the parameters of the output nonlinearity—and
therefore its shape—to change over time. In particular, we en-
abled these parameters to change as a function of stimulus statis-
tics. Because the RC-DRC stimuli were constructed by defining a
matrix of contrast statistics, which varied over frequency and
time, we modeled the changes to the nonlinearity parameters via
a set of spectrotemporal contrast kernels (STCKs). Each STCK
filters the ongoing contrast profile of the sound, �tf, in the same
way that the STRF filters the ongoing spectrogram, Ltf.

The most general model of this scheme has a large of number of
parameters. We therefore began by making a few key simplifications.
First, we assumed that STCKs could be separated into a spectral
component and a temporal component, in the same way that it is
often reasonable to make separable approximations to cortical
STRFs (see above). Thus, we first fitted spectral contrast kernels
(SCKs) and later temporal contrast kernels (TCKs).

Our second simplification was to consider, for each param-
eter of the output nonlinearity, whether that parameter
showed evidence of being dependent on stimulus contrast.
This was motivated by our previous results (Rabinowitz et al.,
2011) that showed that changing the global stimulus contrast
primarily produced changes in gain (here, the d parameter of
the nonlinearity) and the stimulus inflection point (here, the c
parameter). Finally, additional reductions in the parameter
load could be made by sharing contrast kernels between mul-
tiple parameters.

To assess the validity and utility of such simplifications, we fitted
a range of SCK models to the responses of the cortical units. For each
model and unit, we measured the fit quality, together with its ability
to predict responses outside of the training dataset. These were
quantified as the percentage of stimulus-locked response variance
that the model explained in each of the two datasets (Eq. 23). Previ-
ous authors have demonstrated that the measured values of such
quantities depend on the trial-to-trial reliability of the stimulus-
evoked spiking patterns of the units: for less reliable (i.e., noisier)
units, fitted models are more likely to capture noise in the training
dataset and therefore make poorer predictions (Sahani and Linden,
2003). We thus followed Sahani and Linden’s lead and assessed
model performance across the population of cortical units by ex-
trapolating from the set of scores to an idealized, zero-noise unit.
This produced two estimates of the predictive power of the model:
(1) an upper bound, from the fit quality of the model on the training
sets; and (2) a lower bound, from the ability of the model to predict
outside the training sets (Ahrens et al., 2008a). This process is illus-
trated in Figure 3A for the lower bounds.

As a baseline, we fitted simple (separable) STRF and LN
models to each unit. These models were fitted to data that were
pooled across all segments of the RC-DRCs and therefore did
not take into account changes in contrast from segment to
segment. The predictive power of the STRF model was 42.4 –
43.4%, whereas the predictive power of the LN model was
60.2– 62.2%. Adding an output nonlinearity considerably im-
proves model performance.

Including a full set of independent SCKs for each nonlinearity
parameter also improved model predictions (Fig. 3). This a/b/c/d
model (for naming conventions, see Materials and Methods) had a
prediction score of 62.7–70.1%. However, we found that we could
substantially further improve the predictive performance of
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the models by adding constraints to reduce the degree of over-
fitting. First, we found that the parameters a and b did not
generally change with contrast. Fixing these to be contrast in-
dependent (i.e., fitting the c/d model) yielded better prediction
performance of 65.6 –70.1%. In turn, the SCK for the c parame-
ter, �f

(c), and the SCK for the d parameter, �f
(d), were generally

highly correlated with each other (median correlation coefficient
of r(�f

(c), �f
(d) � 0.89). We therefore constrained these two con-

trast kernels to be identical (the cd model). This outperformed
the other SCK models, with a prediction score of 66.2–70.1%. On
a unit-by-unit basis, the cd model outperformed the standard LN

model for 62 of 77 units; this improve-
ment was significant for 48 of these
units (Wilcoxon’s signed-rank test on
N � 40 cross-validated scores, p �
0.01).

According to the cd model, 72 of 77 units
decreased their gain as contrast increased.
The extent of gain changes can be quantified
as the ratio Gd � dhigh/dlow (see Eq. 18),
which measures the proportional dilation of
the output nonlinearity along the x-axis as
a result of switching from the all-high-
contrast condition to the all-low-contrast
condition. A histogram of Gd values for the
population of units is shown in Figure 4A.
The median Gd was 1.92, which is in good
agreement with our previous observations
(Rabinowitz et al., 2011). As expected, units
with larger Gd tended to experience the
greatest improvements in model prediction
by including the SCK (Fig. 4B; Spearman’s
correlation of 0.40; p � 0.001).

In summary, the most parsimonious
model for capturing contrast-dependent
changes to the firing behavior of the units is
the cd model of Equation 11. As contrast is
varied, the output nonlinearities of auditory
cortical neurons undergo a slope change
and a horizontal shift. These changes can be
described as a linear function of the spectral
profile of contrast. In the sections that fol-
low, we concentrate exclusively on the cd
model.

The shape of SCKs
We next asked what the SCKs looked like. Examples of SCKs
fitted to the responses of the cortical units are shown in Figure 5.
The most striking aspect of the SCKs is their similarity in shape to
the STRF frequency kernels, kf. For the frequencies in the excit-
atory component of the receptive field of these units, the weights
of the SCK, �f

(cd), match almost precisely the weights of kf. As the
BF and bandwidth of kf change across these units, so the BF and
bandwidth of �f

(cd) change, too.
There was generally a good correlation between the gain

SCKs of the units, �f
(cd), and the frequency component of their

linear STRF kernels, kf; across units, the median correlation
coefficient was r(�f

(cd), kf) � 0.69.
These kernels thus reveal an important aspect of contrast gain

control: the same frequency channels whose level changes additively
contribute to the firing rate of a cortical unit also divisively contrib-
ute to its gain. In these bands, an increase in tone level increases the
firing rate of the unit, whereas an increase in the contrast of the tone
level distribution of these bands decreases the gain of the unit. In
turn, the relative size of the gain change produced by varying the
contrast in a particular band is approximately proportional to the
size of the change in firing rate produced by increasing the level of
the band.

Contrary to this pattern, we found that, when units had strong
inhibitory sidebands in their STRF—i.e., when there were coeffi-
cients of kf, nearby to the BF, which were negative—the SCKs
often had positive, rather than negative, coefficients for these
same frequencies (Fig. 5E–G). In these bands, an increase in tone
level decreases the firing rate of the neuron; however, an increase

A

B C D

Figure 3. Including SCKs in models of neural responses improves their predictive power over the LN model; this is further
improved by simplifying the model. A, Model predictive power, as measured by Sahani and Linden (2003). Model names are
defined in Materials and Methods. For each model, scatter plots show the cross-validated prediction scores across all 77 units. These
are calculated as the percentage of the signal power (%SPE) of the unit captured by the model on the prediction dataset and shown
as a function of the normalized noise power in the responses of the unit. Gray line shows the extrapolation of prediction scores to
an idealized zero-noise unit, producing a lower bound on the overall predictive power of the model over the population of auditory
cortical units. The upper bound on predictive power has been omitted for clarity. B, Summary of predictive powers for the models
in A. Solid bars show the lower bound (as plotted in A) from cross-validation; error bars show the upper bound from the training
dataset. Although adding a full set of contrast kernels (a/b/c/d) leads to a modest improvement in prediction scores over the LN
model, the large number of parameters in the full model leads to overfitting. Rendering a and b contrast independent reduces
overfitting and improves prediction scores (the c/d model). The best-performing model is the cd model, with a shared contrast
kernel between c and d. C, Comparison between prediction scores for the LN model and for the STRF model, on a unit-by-unit basis.
D, Comparison between the LN model and cd model on a unit-by-unit basis.

A B

Figure 4. Gain model: contrast-dependent gain changes across the population of A1/AAF
units. A, The majority of units decreased their gain as contrast was increased, as expected. This
is measured here by the radio Gd � dhigh/dlow. B, The larger the contrast-dependent gain of a
unit changes, the greater the improvement in model predictive power over the standard LN
model. The (nonparametric) Spearman’s correlation coefficient between Gd and model im-
provement was 0.40 ( p � 0.001).
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in the contrast of the tone level distribu-
tion of these bands also decreases the gain
of the neuron.

These qualitative observations capture
the major trends we observed. Among
those units that deviated somewhat from
this pattern, some had slightly wider SCKs
and others slightly narrower than the ex-
citatory band of the STRF. In addition,
not all of the units with inhibitory side-
bands produced significantly non-zero
�f

(cd) coefficients at the sidebands (Fig.
5H). Finally, �20% of units (17 of 77)
produced noisy, random-shaped contrast
kernels. Among this last group, the SCK
models still produced reasonable predic-
tion scores; the results for these units are dis-
cussed in more detail below.

Simplifying SCKs
It is clear from the examples of Figure 5
that the most salient features of the gain
SCKs are their large, positive coefficients
in a localized region of frequency space.
As mentioned above, these coefficients are
often also positive in the inhibitory side-
bands. Increasing the contrast of any of
these bands thus yields a decrease in neu-
ronal gain. However, very few �f

(cd) coeffi-
cients across the set of models appeared to
be genuinely negative, such that high con-
trast in these bands would lead to an in-
crease in neuronal gain.

Although 45% of all �f
(cd) coefficients

were fitted to negative values, these val-
ues were typically small in magnitude.
They were also generally not significant:
the marginal posteriors on these coeffi-
cients rarely had all their weight below
zero. In total, according to a 95% credible
interval criterion, 7% of �f

(cd) coefficients
across all units were significantly negative;
according to a 99% credible interval crite-
rion, only 3% of �f coefficients were sig-
nificantly negative. These values compare
with 19 and 13% for significantly positive
�f coefficients.

Thus, the coefficients of SCKs were
rarely negative and were generally larger
in magnitude when the STRF frequency
kernel was larger in magnitude. As a result,
rather than describing a correlation between
the coefficients of �f

(cd) of the units and their
kf (as above), there was actually a better cor-
relation between �f

(cd) and the absolute value
of the STRF frequency kernel, �kf� for each
unit, with a median correlation coefficient
of r(�f

(cd), �kf�) � 0.80.
There is reason to suspect that none of

the coefficients of the gain contrast kernel
should be negative. In principle, negative
�f

(cd) values indicate frequency bands for
which high contrast would cause an in-

A

B

C

D

E

F

G

H

Figure 5. Gain SCKs, for eight example units. These are fits of the cd model, with contrast-independent a and b, and a
shared, real-valued SCK, �f

(cd), for c and d. Left, STRF for each unit. Middle, Static output nonlinearities for each unit, when
estimated under the all-high-contrast condition (magenta) and the all-low-contrast condition (cyan), showing the gain
change between the two conditions. Right, SCK for each unit. The black line shows the MAP estimate for �f

(cd); the red filled
region, bounded by the gray lines, shows a 95% credible interval for the posterior distribution over these coefficients. The
red shading increases in darkness with probability. The blue line and blue diamonds show the frequency component of the
linear, separable STRF, kf. Both kf and �f

(cd) have been normalized by the respective SDs to facilitate visual comparison. A–D
exemplify how kf and �f

(cd) align in BF and bandwidth. E–G (but not H) show examples in which �f
(cd) covers the inhibitory

sidebands of the receptive field.
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crease in neuronal gain. This may not be possible under certain
mechanistic implementations of contrast gain control. To test
this possibility, we enforced the constraint that coefficients of
�f

(cd) must be positive. Examples of the resulting kernels are
shown in Figure 6A–H. This model provided even better predic-
tions than using real-valued (i.e., unconstrained) �f

(cd), with a
prediction score of 67.1– 69.9% (Fig. 6 I). The constrained-
positive cd model was, in total, the best predicting SCK model,
and outperformed the standard LN model for 68 of 77 units. This
improvement was significant for 52 of these units (p � 0.01).
Thus, it is likely that negative values in the unconstrained con-
trast kernels reflect an overfitting of the parameter values to the
small sample of conditions presented.

As mentioned above, the gain contrast kernels of a number of
units were noisy, with little observable structure when �f

(cd) was
unconstrained. For all but five of these units, constraining �f

(cd) �
0 yielded contrast kernels that more closely resembled the respec-
tive STRF frequency kernels of the units. Constraining the coef-
ficients of the gain kernels to be positive therefore reveals an
underlying structure to the kernels of noisier units.

A striking feature of the constrained-positive kernels is that,
across all units that gave reliable responses to RC-DRCs, the cor-

relations between the coefficients of �f
(cd) and �kf� are even stron-

ger than for the unconstrained models, with a median r(�f
(cd),

�kf�) � 0.93. This suggests that one may be able to approximate the
gain contrast kernels simply as �f

(cd) � �kf�. We implemented this
as an additional set of models. These showed that, when the SCK
was fixed in this manner rather than fitted, the model perfor-
mance was only slightly impaired relative to fitting an SCK, as
shown in Figure 6 I. Almost identical prediction scores were ob-
tained when we fixed �f

(cd) to be a rectified version of kf, indicating
that the contribution from the inhibitory sidebands to the model
success was small. Finally, as a control, we also tested three alter-
native models: (1) one with �f � kf, i.e., without the absolute
value; (2) a second where �f � �H(kf)�, i.e., as the magnitude of the
Hilbert transform of kf (which produced wider bandwidth SCKs);
and (3) a third in which we ignored all spectral information and
assumed a constant SCK (�f � 1/NF). In all three cases, the model
performed substantially worse. These data are summarized in
Figure 6 I.

The usefulness of the approximation �f
(cd) � �kf� is important.

As this experiment demonstrates, the number of conditions
needed to estimate gain contrast kernels is large, making it a
time-consuming process. Conversely, including gain changes
leads to substantial increases in model performance. When using
the approximation, only two additional variables beyond the
standard output nonlinearity need to be estimated (c1 and d1),
which can be done quickly using only two contrast conditions.
Thus, greatly improved models of the responses of auditory cor-
tical neurons can be readily implemented using this approach.

Temporal contrast kernels
Just as the SCKs reveal how units integrate the spectral pattern of
stimulus contrast to determine their gain, TCKs reveal how units
integrate the recent history of stimulus contrast to the same ef-
fect. To map the TCKs of the cortical units, we fixed their SCKs
and fitted models to the neuronal responses immediately after
each segment transition.

Examples of TCKs, �h
(cd), are shown in Figure 7A–D. As for the

temporal component of the STRFs of these units, the units were
most sensitive to the contrast in the most recent 50 –100 ms of
stimulation and retained a weak dependence on the contrast sta-
tistics further back in history.

Including the TCK for gain changes led to an overall improve-
ment in the model predictive power. For the responses during
these transition periods, the prediction scores were 43.1% for the
STRF model, 59.7% for the LN model, 64.3% when only the SCK
was considered, and 67.3% when the full STCK was implemented
(Fig. 7F). The STCK outperformed the LN model for 72 of 77
units, of which 54 were significant (Wilcoxon’s signed-rank test
on N � 100 cross-validated scores; p � 0.01).

Simplifying TCKs
A secondary goal of this work is to develop simple approxima-
tions to contrast kernels that can be applied without requiring the
time-consuming exploration of stimulus space attempted here.
We therefore considered a number of simplifications to the TCK
model. The success of each of these simplifications is summarized
in Figure 7G.

We noted that the population mean of the TCKs, shown in
Figure 7E, followed an approximately exponential decay, with a
time constant of � � 86 ms. We therefore fitted a simplified,
single-parameter TCK model to each unit, �h

(cd) � exp(�h/�H),
where �H is the time constant (Fig. 7H). The median time con-
stant fitted to the 77 units was �H � 117 ms. The model per-

A E

B F

C G

D

I

H

Figure 6. Approximations to the cd model. A–H, Gain SCKs when coefficients were con-
strained to be positive. This shows the same eight units as shown in Figure 5. Again, the fre-
quency component of the STRF, kf (blue), approximately matches the gain SCK, �f

(cd) (black line
and red area). I, Model predictive power for the cd model with constrained coefficients; as in
Figure 3B, solid bars show prediction scores, and error bars show training scores. When the
contrast kernel coefficients are unconstrained (� � ℜ; right), the model performance is better
than the linear (STRF) and LN models (left). Restricting the coefficients of the SCK to be positive
(� � 0) reduces overfitting and improves prediction scores. Excellent approximations are pro-
vided by fixing the SCKs as either the absolute value of the STRF frequency kernel (� � �k�) or
the rectified value (� � �k� 
). Models that do not perform as well include fixing the contrast
kernel as the STRF frequency kernel (�� k), fixing it as the magnitude of the Hilbert transform
of the STRF frequency kernel (� � �H(k)�), or assuming that it is constant with respect to
frequency (� � 1). These still outperform the simple LN model. Dashed lines are shown at the
model performance values for the LN model and the constrained-positive cd model.
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formed well compared with fitting a full
TCK, with a score of 67.2%. We also con-
sidered whether, for the purposes of par-
simony, a single time constant could be
used for all units within the population.
By fixing �H at different values, we found
that the most predictive model had �H �
85 ms, with a prediction score of 67.1%.
There was, however, a reasonably broad
range of �H values between 80 and 120
ms that gave similarly respectable scores
(Fig. 7I ).

Finally, in the same way that the SCKs
could be approximated, up to a normal-
ization constant, as the absolute value of
the frequency component of the STRF, so
too the TCKs could be approximated as
the absolute value of the temporal compo-
nent of the STRF. This produced a predic-
tion score of 67.2%. Thus, the absolute
value of the STRF provides an excellent
approximation for the STCK of a cortical
neuron.

Discussion
The goal of this study was to determine the
spectrotemporal windows within which
stimulus contrast modulates the gain of au-
ditory cortical neurons. We therefore con-
structed a stimulus set that provided an
ensemble of different contrast conditions
(Fig. 1) and investigated how the response
properties of cortical units changed under
these conditions (Fig. 2). We were able to
estimate the relative contributions of the
contrast in different frequency bands and
different time bins to the gain of individual
units, via their STCKs.

We found that the spectral compo-
nents of these kernels (the SCKs) typically
place their weight on the same frequency
bands that contribute to the STRF of a
neuron (Fig. 5). Thus, when the firing rate
of a neuron is linearly sensitive to the level
variations in a particular band, then it is
also divisively sensitive to changes in the
contrast of that band. Not only are SCKs
coextensive with the frequency component
of the STRF, but they are also matched in
magnitude: the extent to which the contrast
of a band contributes to the gain of a neuron
is approximately proportional to the extent
to which the level of that band contributes to
the firing rate of the neuron (Fig. 6I). Neu-
rons with narrow tuning curves are sensitive
to contrast in a narrow frequency window,
whereas the gain of neurons with broad tun-
ing curves can be influenced by contrast
over a similarly broad frequency range. Cu-
riously, the spectral region whose statistics
determine gain includes the inhibitory side-
bands of a neuron: high contrast in the side-
bands also reduces neural gain.

A

B

C

D

E

G H I

F

Figure 7. TCKs. A–D, Left panels show the TCKs for four example units. As in Figures 5 and 6, red area shows the gain TCK, �h
(cd),

whereas blue line and diamonds show the temporal component of the STRF, kh. Right panels compare the STRF, kfh, with the full
STCKs, �fh

(cd), as per Figure 2. E, Mean of the contrast time kernels from the 77 cortical units, �� h
(cd). This shows the approximately

exponential shape of the time kernels. The mean contrast kernel had a fitted time constant of 86 ms. F, Model predictive power.
Including a history component to the contrast kernels (�fh) improves the performance of the model compared with the assumption
that only the current contrast matters (�f). Prediction scores for the simple STRF model and the LN model are shown for compar-
ison. Note that this is fitted over a different dataset from that used in Figures 3– 6, so the values of %SPE in this figure do not match
those presented previously. G, Model predictive powers for a range of TCK models. In order, from left to right, these models are the
following: (�f), no history dependence, i.e., �h � h0; (�), exponential model with time constant �H fitted (see H); (85 ms),
exponential model with �H fixed at 85 ms (see I); (�0), �h constrained to be positive; (ℜ), �h allowed to take on any real value;
(�kh�), �h approximated as the absolute value of the STRF time kernel. Dashed horizontal lines show the model predictive power for
the �f and the �0 models. Note that allowing the coefficients of the TCK to be real-valued (the ℜ model) led to considerable
overfitting; the �0 model is thus the STCK model considered in Materials and Methods. H, Fits of the time constant �H for the
exponential model for all 77 units. The median time constant was 117 ms. I, Model predictive power for the exponential model
when �H was fixed rather than fitted. Abscissa denotes the fixed value of �H, ordinate as in G. The horizontal dashed lines are as in
G. The most predictive model had �H � 85 ms. Thus, three different measures of the time course of gain changes (in E, H, and I)
give approximately consistent answers.
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The temporal component of these kernels (the TCKs) could be
fitted reasonably well by an exponential curve, with a time constant
of �85 ms. Similar to the SCKs, the TCKs could also be approx-
imated well as the absolute value of the time component of the
corresponding STRF (Fig. 7). Thus, a simple approximation of
the gain contrast kernel is �fh

(cd) � �kfh�. In summary, cortical
neurons integrate stimulus contrast and level fluctuations
over a similar spectrotemporal window, albeit to different ef-
fects. This is summarized in Figure 8.

Little contribution to the gain from remote spectral and
temporal regions
This study considerably extends a preliminary estimation of con-
trast kernels presented by Rabinowitz et al. (2011). There, we
attempted a coarse, population-level characterization of the
SCKs of auditory cortical neurons and found that the gain of
neurons depended predominantly on the contrast in spectral re-
gions local to the BFs of the units. This is confirmed by the results
presented here.

Although our previous study ruled out strong contributions
to the gain from frequency bands outside the STRFs of neurons,
we did find evidence for weak contributions from these bands,
suggesting that gain control in the auditory cortex is, to some
extent, dependent on global statistics. In the present study, how-
ever, we found that the gain kernels were primarily restricted to
the frequency bands present in the STRF.

Stimulus design may explain this discrepancy. In the study by
Rabinowitz et al. (2011), we categorically divided frequency
bands into local and remote groups, in a way that may have
underestimated the range of frequency bands that additively con-
tributed to the STRF. Our approach here circumvented this prob-
lem by being noncategorical. Conversely, the subset of contrast
space explored here may have been insufficient to reveal the con-
tributions from remote bands, which could be weak (or super-

additive) and only detectable as a
compound effect. These results therefore
bound the magnitude of extra-classical re-
ceptive field contributions to neuronal
gain.

The match between the domains of
SCKs and linear STRFs is consistent with
previous findings on forward suppression:
in general, the more a sound matches the
preferred stimulus of a neuron, the more it
suppresses subsequent responses (Calford
and Semple, 1995; Brosch and Schreiner,
1997; Reale and Brugge, 2000; Zhang et al.,
2005; Scholl et al., 2008). The match be-
tween TCKs and STRFs, however, initially
seems at odds with the long timescales of
adaptation reported previously in the audi-
tory cortex (Ulanovsky et al., 2004; Wehr
and Zador, 2005; Asari and Zador, 2009).
The contrast kernel models therefore cap-
ture only a fast component of this adapta-
tion, much like the rapid luminance and
contrast gain control identified in the retina
(Enroth-Cugell and Shapley, 1973; Baccus
and Meister, 2002). It is possible that we did
not see slower adaptation components
because our DRCs switched contrast
rapidly: in the retina, the timescale and
parameters of stimulus dynamics directly

impact on the timescale of slow contrast adaptation (Wark et al.,
2009).

The similarity between the domains of STCKs and STRFs sug-
gest that both phenomena share some common source. However,
our results can only partially constrain this mechanism. The
shape of STRFs depends on complex interactions between exci-
tation and inhibition (Wallace et al., 1991; Budinger et al., 2000;
Winer et al., 2005; Liu et al., 2007; Wu et al., 2008; Moeller et al.,
2010). Gain control could therefore be explained by a combina-
tion of excitatory and/or inhibitory inputs (Chance et al., 2002;
Murphy and Miller, 2003; Katzner et al., 2011), the action of
intrinsic currents (Abolafia et al., 2011), or the activation of local
layer six neurons with similar tuning, as observed recently in
primary visual cortex (V1) (Olsen et al., 2012). Given the rapid-
ity of the TCKs, our results are unlikely to be fully described by
cortical synaptic depression, which appears to operate at lon-
ger timescales (Wehr and Zador, 2005). Gain control may have
subcortical origins (Anderson et al., 2009; Malmierca et al.,
2009), provided these combine in a similar manner to the way
they produce cortical STRFs. It may be possible to evaluate the
relative likelihood of these mechanisms by comparing STRFs
and STCKs under different stimulation conditions because
STRFs are known to change under different stimulus contexts
(Theunissen et al., 2000; Blake and Merzenich, 2002; Valen-
tine and Eggermont, 2004; Woolley et al., 2005; David et al.,
2009; Schneider and Woolley, 2011).

Implications for modeling
The contrast kernel models advanced in this work provide con-
siderably better predictions of the responses of neurons com-
pared with STRF and LN models. They capture �20% of the
residual variance not explained by the LN model. Because STCKs
can be approximated well from the absolute value of the STRF,
this model requires only two additional parameters beyond the

Figure 8. Summary of results. We find that the gain changes undergone by cortical neurons in response to complex
patterns of stimulus contrast can be captured by this simplified contrast kernel model. The neural response is determined
by convolving the spectrogram with a linear spectrotemporal kernel (kfh) and passing the output of this operation (xt)
through a static output nonlinearity to produce the predicted spike rate (ŷt). The minimum and maximum firing rate of the
output nonlinearity are fixed, but the stimulus inflection point (c) and the (inverse) gain (d) change over time, depending
on the statistics of recent stimulation. The evolution of c and d over time is determined by convolving the contrast profile
of the sound, �tf, with a single contrast kernel, �fh

(cd), as in Equation 11. Finally, the contrast kernel can be approximated as
�fh

(cd) � �kfh�. This model captures 20 –25% of the residual variance not explained by the LN model by adding only an
additional two parameters.
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LN model (and hence six parameters beyond the STRF). The
model presented in Figure 8 thus provides a simple and powerful
way of extending existing models for the responses of auditory
cortical neurons, capturing the sensitivity of these neurons to
patterns of stimulus contrast.

The gold standard for models such as these is to be able to
predict responses of auditory neurons to natural stimuli (Wu
et al., 2006). Studies that have estimated receptive field models
using synthetic stimuli have repeatedly found that the models
do not generalize well to natural sounds (Theunissen et al.,
2000; Rotman et al., 2001; Machens et al., 2004; David et al.,
2009). One compelling reason for this is that natural sounds
likely engage nonlinear coding mechanisms, which may not be
activated within the spaces of synthetic stimuli, such as DRCs
or ripples (Theunissen et al., 2000; Woolley et al., 2006; David
et al., 2009). Furthermore, the linear approximations made
during model construction are sensitive to the statistics of the
subspace of stimuli explored (Christianson et al., 2008). Be-
cause natural scenes vary in their statistics over time, it is likely
that including time-varying gain control will improve the pre-
dictions of STRF-based models.

One particular difficulty in extending these models to other
domains is knowing how to measure stimulus contrast. For the
synthetic stimuli we used here, the contrast was specified by de-
sign; we therefore used the stimulus parameters as input into the
models. For arbitrary sounds, an algorithm for estimating �tfh

would need to be specified; provided this algorithm makes
broadly consistent measurements of the stimulus parameters that
we used here, we anticipate that the benefits of including gain
control will be considerable.

Gain control and divisive normalization
One form in which gain control is often cast is that of divisive
normalization. In the abstract, this is a gain standardization
process by which an initial set of responses— usually the result
of information fed forward from earlier brain areas—is res-
caled. The scaling factor takes the form of a local response
normalizer: the activity of each neuron is divided by the
pooled activity over other neurons in a local neighborhood
(Heeger, 1992; Carandini et al., 1997). There is considerable
evidence for normalization in a large number of systems, in-
cluding V1 (Heeger, 1992; Carandini et al., 1997; Rust et al.,
2005), extrastriate visual cortex (Miller et al., 1993; Missal et
al., 1997; Recanzone et al., 1997; Simoncelli and Heeger, 1998;
Britten and Heuer, 1999; Heuer and Britten, 2002; Zoccolan et
al., 2005), superior colliculus (Basso and Wurtz, 1997), and
the Drosophila antennal lobe, which mediates olfaction (Olsen
et al., 2010), as well as in multisensory integration (Ohshiro et
al., 2011).

There remains considerable debate as to what combination
of cellular and circuit mechanisms actually mediates divisive
normalization in the visual system (Carandini and Heeger,
2012). Nevertheless, it has proved to be a powerful idea for
advancing our understanding of the computations actually
being performed by a given system. Normalization promotes
efficient coding, not only by shifting stimulus representations
to use more of the dynamic range of neurons but also by
encouraging decorrelated, higher-entropy representations of
natural signals (Ruderman and Bialek, 1994; Olshausen and
Field, 1996; Brady and Field, 2000; Fairhall et al., 2001;
Schwartz and Simoncelli, 2001). Theoretical work has also
argued for a role for normalization in other computations,

such as decoding (Deneve et al., 1999; Ringach, 2010) and
marginalization (Beck et al., 2011).

If we consider a network implementation of gain control,
our result that � � �k� demonstrates that auditory cortical
neurons have gain pools that share similar spectrotemporal
sensitivity profiles. Thus, just as many systems appear to con-
struct representations that are invariant to the normalized
statistic, including visual representations in V1 that are con-
trast invariant (Albrecht and Hamilton, 1982; Heeger, 1992;
Busse et al., 2009; Ringach, 2010), velocity representations in
MT that are spatial-pattern-invariant (Heeger et al., 1996;
Simoncelli and Heeger, 1998), and odor representations in the
antennal lobe that are concentration invariant (Luo et al.,
2010; Olsen et al., 2010), so it appears that the auditory cortex
builds representations of sounds that are partially invariant to
their spectrotemporally local contrast.
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