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SUMMARY

When interfering objects occlude a scene, the
visual system restores the occluded informa-
tion. Similarly, when a sound of interest (a ‘‘fore-
ground’’ sound) is interrupted (occluded) by
loud noise, the auditory system restores the oc-
cluded information. This process, called audi-
tory induction, can be exploited to create a con-
tinuity illusion. When a segment of a foreground
sound is deleted and loud noise fills the missing
portion, listeners incorrectly report hearing the
foreground continuing through the noise. Here
we reveal the neurophysiological underpin-
nings of illusory continuity in single-neuron
responses from awake macaque monkeys’ pri-
mary auditory cortex (A1). A1 neurons repre-
sented the missing segment of occluded tonal
foregrounds by responding to discontinuous
foregrounds interrupted by intense noise as if
they were responding to the complete fore-
grounds. By comparison, simulated peripheral
responses represented only the noise and not
the occluded foreground. The results reveal that
many A1 single-neuron responses closely fol-
low the illusory percept.

INTRODUCTION

In natural environments, a sound of interest (a ‘‘fore-

ground’’ sound) is often obscured by brief interrupting

sounds produced by other objects (‘‘background’’

sounds). For example, when a monkey attempts to identify

another monkey’s vocalization, background bird chirps

might interrupt the monkey vocalization. When interrupt-

ing background sounds are loud enough to completely

obliterate a short underlying foreground segment, the au-

ditory system fills in the occluded segment through a pro-

cess called auditory induction, so-called because the

foreground preceding and following the background

sound induces perceptual restoration of the missing fore-

ground segment. If there were no inducing foreground
segments preceding and following the loud noise, the

foreground would be imperceptible because of masking

(Figures 1E and 1F) by the background. Auditory induction

is known by other names, such as amodal completion, fill-

in, or phonemic restoration (Bregman, 1990; Miller et al.,

2001; Petkov et al., 2003; Warren, 1970; Warren et al.,

1972), and is an example of a general ability of the brain to

perceptually organize sensory input to fill-in occluded in-

formation (Komatsu, 2006; Pessoa and De Weerd, 2003).

Auditory induction can be exploited to create an illusion,

which was originally demonstrated with speech sounds.

When segments were deleted from speech, the result was

poor comprehension. However, when the removed seg-

ments were filled with loud noise, speech comprehension

improved dramatically, providing compelling evidence

that the brain restored the deleted information (Warren,

1970). Further studies (Bashford et al., 1988; Warren

et al., 1972, 1988) demonstrated that illusory induction is

not speech specific, but rather a general process that oc-

curs with many foregrounds, including tones (Figures 1A–

1D illustrate the stimulus configurations used in our study).

This illusory induction has also been called the continuity

illusion and is conceptually related to visual illusory con-

tours (Day and Kasperczyk, 1983; Kanizsa, 1979), illusory

motion (Assad and Maunsell, 1995), and induction (Rossi

and Paradiso, 1996). An important requirement for audi-

tory induction is that energy be present at induced fre-

quencies. Thus, induction can be thought of as a process

of perceptually organizing and assigning sound energy to

various objects, selectively allocating ambiguous energy

into a coherent scene, rather the than the creation of an

illusory percept in the absence of sensory stimulation.

Auditory induction has been studied behaviorally in hu-

mans (Kluender and Jenison, 1992; Warren, 1970; Warren

et al., 1972, 1994; Wrightson and Warren, 1981), cats (Su-

gita, 1997), and monkeys (Miller et al., 2001; Petkov et al.,

2003). However, the relationship of neuronal activity to in-

duction remains a mystery. Psychophysical studies have

provided two principles that guide the search for induc-

tion’s neural basis (Bregman, 1990; Bregman and Dan-

nenbring, 1977; Houtgast, 1972). The first, called the ‘‘suf-

ficiency of evidence rule,’’ states that during the occluding

noise some neural activity should be indistinguishable

from activity that would have occurred if the tone actually

continued through the noise (Bregman, 1990). The
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second, termed the ‘‘no discontinuity rule’’ (Bregman,

1990), states that there should be no neural evidence of

transitions in the foreground (i.e., no evidence of the onset

or offset of the foreground sound). This rule is based on

experiments showing that induction is reduced or elimi-

nated by placing a discontinuity or transition just prior to

occluding-noise onset. For example, no induction occurs

if an amplitude ramp is inserted into the foreground just

prior to the interrupting noise, even if the ramp is an ampli-

tude increase, which actually strengthens the foreground

signal (Bregman and Dannenbring, 1977).

A heuristic model derived from these two rules helps to

reveal the required single-neuron responses (Figure 2).

First, to support the sufficiency of evidence rule, neurons

with sustained firing to the foreground (Figures 2A–2C)

should respond during induction as if the foreground were

continuous (Figure 2C). Many auditory neurons have sus-

tained responses to at least one stimulus (Wang et al.,

2005). Next, to obey the no discontinuity rule, the model

predicts that responses to tone transitions or discontinu-

ities are eliminated by the occluding noise. Many auditory

cortical neurons, even in awake preparations, are highly

sensitive to amplitude transitions in sounds, commonly

yielding phasic responses to tone onsets and offsets

(Creutzfeldt et al., 1980; Erulker et al., 1956; Fishbach

et al., 2001; Katsuki et al., 1959; Recanzone, 2000).

Such phasic responses are well suited for detecting dis-

continuities in sounds and become more common as

one ascends the auditory system (e.g., inferior colliculus,

Figure 1. Schematized Spectrograms Demonstrating Stimuli

and Their Relationship to Illusory Induction and Masking

Spectrograms of (A) continuous and (B) discontinuous tones and inter-

rupting noise centered in (C) continuous and (D) discontinuous tones.

High-intensity interrupting noise causes perceptual restoration (induc-

tion) of the deleted tone segment, with the tone being reported as con-

tinuous even when it is not. Here both a continuous foreground and

noise are perceived. Spectrograms of surrounding noise temporally

overlapping entire (E) continuous and (F) discontinuous tones. High-

intensity surrounding noise masks the tone, and only noise is heard.
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Walton et al., 1997; thalamus, Schreiner, 1980; auditory

cortex, Steinschneider et al., 1995; Eggermont, 1999;).

To obey the no discontinuity rule, phasic responders

should fail to respond to tone transitions (Figures 2F and

2I) during induction. This model leads to a neural repre-

sentation of induction as follows. When loud noise fills

the gap (Figure 1D), three neural response components

behave as if a continuous foreground were present, even

though a part of it was deleted. Sustained responders

should fire continuously (Figure 2C), as if there were no

pause in the tone. Offset responders must fail to detect

the offset of the initial tone segment (Figure 2F). Third, on-

set responders should fail to detect the reintroduction of

the tone (Figure 2I).

To correctly interpret the neural evidence, it is neces-

sary to recognize that induction comprises the percepts

of both a continuous foreground and the interrupting

noise. This is quite distinct from the percept created by

loud masking noise surrounding the foreground in time

(Figures 1E and 1F), which causes subjects to hear only

noise (Bregman, 1990; Kluender and Jenison, 1992; Pet-

kov et al., 2003). Therefore, when loud, interrupting (induc-

ing) noise (Figures 1C and 1D) occludes a sound, the brain

should respond as if a complete foreground and a noise

were present. However, when loud surrounding (masking)

noise (Figures 1E and 1F) is presented with the foreground

sound, the brain should respond as if only noise were

present. Here we contrast monkey primary auditory corti-

cal responses to illusory induction and masking stimuli to

evaluate whether single neurons encode the illusory in-

duced sound features (induction) as opposed to following

the physical stimulus attributes (masking). We used stimuli

Figure 2. Heuristic Model of Single-Neuron Response Corre-

lates of Auditory Induction

On the top of each column are schematic spectrograms of the following

stimuli: (A) a continuous tone, (B) a discontinuous tone, and (C) a

discontinuous tone interrupted by intense noise. The latter (C) causes

induction, and to be consistent with perception of a continuous tone

during induction, responses in the third column (C, F, and I) should be

like those to a continuous tone (A, D, and G). Each row shows schema-

tized peristimulus time histograms (PSTHs) for AI neurons with sus-

tained (A–C), offset (D–F), and onset (G–I) responses to the three stimuli.
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identical to those from a recent psychophysical study

demonstrating auditory induction and masking in ma-

caques (Petkov et al., 2003). Results are consistent with

the model of Figure 2 and the perception of both the illu-

sory foreground segment and interrupting noise during

induction.

RESULTS

Consistent with the hypothesized model of auditory induc-

tion, many A1 neurons represented the induced segment

of occluded tones by responding to discontinuous tones

occluded by intense noise (Figure 1D), as if responding

to the complete tone without noise (Figure 1A). One such

neuron responded to a continuous tone with an onset re-

sponse followed by a pause and then sustained discharge

(a sustained response, Figure 3A). When a gap was intro-

duced (Figure 3B) during the period of sustained dis-

charge to the continuous tone, a significant reduction in

activity relative to the continuous tone response began

�35 ms after gap onset (compare Figure 3A to 3B during

red/dark bins, p < 0.001 bootstrap, see Experimental

Procedures). However, responses to both continuous

(Figure 3D) and discontinuous (Figure 3E) tones interrup-

ted by loud inducing noise were similar to the responses

to isolated complete tones (compare Figures 3D and 3E

to 3A, no significant differences, bootstrap). The decrease

in activity associated with gaps (Figure 3B, red/dark) was

no longer observed when loud noise filled the gap (com-

pare Figure 3B to 3E, red, p < 0.001). In other words, the

neuron responded as if the tone were complete under

conditions that have been shown in monkeys and humans

to cause illusory completion of the deleted segment

(Kluender and Jenison, 1992; Petkov et al., 2003).

This neuron was not excited by the 63 dB SPL noise

presented in isolation (Figure 3C), indicating that simple

linear addition of the noise response (Figure 3C) to the dis-

continuous tone response (Figure 3B) cannot explain the

response to the stimulus that is the linear combination of

the two (Figure 3E). The stimuli in this study were carefully

chosen such that the discontinuous tone with noise stim-

ulus (Figure 3E in this example) was created by adding the

discontinuous tone stimulus (Figure 3B) to the noise stim-

ulus (Figure 3C). This allows application of a standard

definition of linearity: the response to two stimuli added

together is linear if it equals the sum of the response to

the two stimuli presented in isolation. This definition will

be used throughout the text. By this definition, while ad-

justing for spontaneous activity, linearity is violated be-

cause the response to the discontinuous tone with noise

(Figure 3E) should be less than the response to the discon-

tinuous tone (Figure 3B) because the noise is weakly inhib-

itory (Figure 3C). The response to the discontinuous tone

with noise is actually larger than the response to the dis-

continuous tone without noise, suggesting that there is

an opposite effect of the noise on the response to the dis-

continuous tone (net excitatory) than when the noise was

presented in isolation (net inhibitory). Therefore, the dis-
continuous tone plus noise response (Figure 3E) is much

greater than the linear addition of the response to its

components (Figures 3B and 3C).

Another neuron that behaved in a manner consistent

with the perception of induction responded to tones with

sustained inhibition followed by excitation to tone offset

(a phasic offset response, Figure 4A). When a silent inter-

val was introduced into the tone, the neuron responded to

the first tone segment’s offset with excitation (Figure 4B,

red/dark). When the high-intensity interrupting (inducing)

noise was added to the tones, the responses (Figures

Figure 3. Sustained Single-Neuron Response Consistent

with Induction

Above each peristimulus time histogram (PSTH) are schematized stim-

ulus spectrograms (see [A] for spectrogram axis labels). Vertical gray

lines in PSTHs align stimulus events. (A and B) PSTH and raster plots

to continuous and discontinuous tones. Red (darker if printed in black

and white) bins highlight times when the response is most different be-

tween continuous and discontinuous tones. (C) Response to 63 dB iso-

lated noise. (D and E) Responses to continuous and discontinuous

tones interrupted by 63 dB noise. In (C), isolated noise is time aligned

to the identical noise components in the combined tone-noise stimuli,

so noise onset is actually at time = 172 ms. Also in (C), the bins prior to

time =�28 ms are empty because only 200 ms prestimulus spontane-

ous activity was collected for all stimuli. This should not be considered

a lack of a response; spontaneous activity for this stimulus (C) can only

be observed from time = �28 to time = 172 ms.
Neuron 54, 153–165, April 5, 2007 ª2007 Elsevier Inc. 155
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4D and 4E) were similar to the response to a complete

tone in isolation (Figure 4A). This demonstrates that the

neuron responded as if the tone were complete under

conditions known to cause induction of the deleted seg-

ment (Figure 4E). The response to the stimulus that causes

illusory continuity (Figure 4E), once again, cannot be pre-

dicted by simple linear summation of the responses to its

components presented individually (Figures 4B and 4C).

The first violation is the neuron’s inability to detect the

gap in Figure 4E (red bins) where linear summation of

the responses to Figures 4B and 4C predicts a larger re-

sponse during the red bins; it should be noted that the re-

sponse at the same time to the nonillusory stimulus in

Figure 4D is roughly linear, i.e., equal to the response in

Figure 4C plus the response in Figure 4A. The second vi-

olation of linearity is the elimination of the excitatory re-

sponse to noise presented in isolation (see asterisk in

Figure 4C, at time �300 ms) when the noise was pre-

sented in combination with tones (Figure 4D or 4E). While

there are several possible explanations for this response,

inhibition by the tone is a likely contributor.

Onset-responding neurons also behaved in a manner

consistent with induction. One exemplary neuron re-

sponded to tone onset (a phasic onset response,

Figure 5A). For discontinuous tones, the neuron also re-

Figure 4. A Single Neuron’s Phasic (Offset) Response That Is

Consistent with Induction

Same format as Figure 3. Note that the noise-alone response, asterisk

in (C), and the gap response (B) are missing during induction.
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sponded to the tone re-onset after the gap (Figure 5B)

and was excited by noise (Figure 5C). This neuron also

nonlinearly responded to the combined tone-noise stimuli.

The gap-related response was suppressed by the pres-

ence of the noise in Figure 5E, even though the noise by

itself was excitatory (Figure 5C). The result was that the

stimulus known to cause illusory induction (Figure 5E)

caused responses consistent with induction; that is, the

response to a discontinuous tone interrupted with noise

(Figure 5E) was similar to the response to a continuous

tone (Figure 5A) and dissimilar to the noise (Figure 5C)

and gap (Figure 5B) responses.

Another exemplary neuron responded with excitation to

both tone onset and offset (Figure 6A) and with corre-

sponding excitation to gaps in tones (middle peak of activ-

ity in Figure 6B, red/dark). Short, loud interrupting noise

removed the gap-related response, making both com-

plete and incomplete noise-interrupted tone responses

(Figures 6D and 6E) similar to isolated complete tone re-

sponses (Figure 6A). Therefore, this neuron responded

as if the tone were complete under conditions known

to cause illusory completion of the deleted segment

(Figure 6E). The four examples (Figures 3–6) demonstrate

responses consistent with the induction model of Figure 2.

In contrast to the percept of induction, where occluded

tone segments are heard continuing through brief inter-

rupting noise (Figures 1C and 1D), loud noise completely

surrounding tones in time (Figures 1E and 1F) creates

a masking percept where only noise (and no tone) is heard

Figure 5. Onset Response Consistent with Induction

Same format as Figure 3.
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Figure 6. A Single Neuron’s Response Is Consistent

with Induction for Interrupting Noise and Masking for

Surrounding Noise

Same format as Figure 3 except the right column (F–H) is for

intense masking surrounding noise that causes only noise (and

no tone) to be heard. Note that the differences in responses to

interrupting and surrounding noise onsets likely are accounted

for by differences in the onset ramps (0 ms for interrupting

noise and 25 ms for surrounding noise, see Experimental

Procedures).
(Bregman, 1990; Kluender and Jenison, 1992; Petkov

et al., 2003). Accordingly, responses consistent with

masking require only that responses to combined tone-

noise stimuli resemble responses to noise presented in

isolation, whereas neural responses consistent with in-

duction require representations of both a continuous tone

and the interrupting noise.

Neurons reflected the corresponding induction and

masking perceptions with interrupting and surrounding

noise, respectively. The neuron demonstrating induction-

related responses in Figure 6E for interrupting noise re-

sponded as if being masked when presented with intense

surrounding noise. For the long-duration noise, a short

and weak onset response was followed by sustained inhi-

bition (Figure 6F). This noise response differed markedly

from tone responses, which had a stronger, longer excit-

atory component and no sustained inhibition (Figure 6A).

When loud noise surrounded continuous or discontinuous

tones, the neuron responded as if only noise were

presented (compare Figures 6G and 6H to Figure 6F): a

response consistent with masking.

Given the two distinct percepts of masking and induc-

tion, we predicted that neurons would respond to discon-

tinuous tones with intense surrounding noise as if to

isolated noise: a neuronal correlate of masking (i.e., cells

only detect noise). However, for discontinuous fore-

grounds with intense interrupting (inducing) noise, a differ-

ent result was predicted. Because during induction both

the noise and the induced deleted foreground segment

are perceived (Bregman, 1990; Kluender and Jenison,

1992; Warren, 1970; Warren et al., 1972), in order to be

consistent with the percept of induction, the neuronal

population must represent both the induced tone segment

and the occluding noise. Accordingly, for interrupting

noise we expected the population to represent the contin-

uous tone (illusion) as well as the noise.

To test these predictions, differences between masking

and induction were quantified using a response index,

a normalized tone-noise-similarity index (TNSI, see Exper-
imental Procedures, Data Acquisition and Data Analysis,

for details on the analysis and the neural sample). TNSI

values ranged from �1 to +1, signifying that responses

to discontinuous tones presented with the loud noise were

similar to noise (�1, masking) or tone (+1, induction) re-

sponses (Figure 7A). Responses to tones presented with

intense surrounding noise were more like noise-only re-

sponses (median TNSI = �0.37; Figure 7B), consistent

with the masking percept of hearing only noise. In con-

trast, for loud interrupting noise, the population of neurons

representing the tone and noise were more positively dis-

tributed (median TNSI = �0.07; Figure 7C). Differences in

median TNSI values for surrounding and interrupting noise

were statistically significant, indicating that, for interrupt-

ing noise, more neurons responded as if the missing

tone segment were present than did for surrounding noise

(Kolmogorov-Smirnov [K-S] test: Z = 1.78, p = 0.004;

Mann-Whitney: Z = 3.43, p = 0.001; see Experimental Pro-

cedures). This effect was observed separately for onset,

sustained, and offset response components, consistent

with the model in Figure 2 (sustained: interrupting noise

n = 140 versus surrounding noise n = 71, K-S test, Z =

1.60, p = 0.012; onset: interrupting noise n = 93 versus

surrounding noise n = 49, Z = 1.52, p = 0.02; offset: inter-

rupting noise n = 124 versus surrounding noise n = 67,

Z = 1.40, p = 0.04).

For the neurons with positive TNSI values for interrupt-

ing noise—those hypothesized to represent the tone

rather than noise during induction—we wanted to deter-

mine whether they represented the illusory tone segment

because the TNSI does not rule out their representing the

gap. If they responded as if a gap were present, this would

suggest that the neurons neither supported masking nor

induction. The tone-encoding neurons responded as if a

continuous tone were presented, indicating that they rep-

resented the induced tone segment. We quantified this

using a tone-gap-similarity index (TGSI). TGSI values

ranged from�1 to +1, signifying that responses to discon-

tinuous tones presented with the loud noise were similar to
Neuron 54, 153–165, April 5, 2007 ª2007 Elsevier Inc. 157
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Figure 7. Population of Single-Unit Re-

sponses Supports a Neural Representa-

tion of Masking for Surrounding Noise

and of Induction for Interrupting Noise

(A) Tone-noise similarity varies from +1 (re-

sponse to a discontinuous tone presented

with intense noise equals the isolated continu-

ous tone response) to �1 (response to discon-

tinuous tone presented with intense noise

equals the isolated noise response). (B and C)

Single-neuron TNSI distributions for surround-

ing and interrupting noise. (E) Neurons with

positive TNSI values (see arrow in [C]) re-

sponded as if noise-interrupted discontinuous

tones were continuous and not is if they were

discontinuous. (D and E) Tone-gap-similarity

index varies from +1 (response to discontinu-

ous tone presented with intense interrupting

noise equals the isolated continuous tone re-

sponse) to �1 (response to discontinuous

tone presented with intense noise equals the

isolated discontinuous tone response). Arrow-

heads in (B)–(D) show the median, and aster-

isks (*) show the TNSI and TGSI value for the

example cell in Figure 6.
responses to a discontinuous (�1) or continuous (+1) tone

presented without noise. The results with the TGSI indi-

cated that when loud interrupting noise was used, 74%

(63/85) of the neurons’ responses were closer to a contin-

uous than to a discontinuous tone response (Figure 7E).

The effect was significant (one sample t test differed

from 0, t = 6.3, p = 0.000; one sample K-S test of uniformity

Z = 2.7, p = 0.000; median TGSI = 0.42). This indicates that

most of the neurons representing the tone over the noise

during the inducing stimuli are representing a continuous

(rather than a discontinuous) tone, consistent with the

induction percept.

The observations so far were based on recordings taken

near each neuron’s best-frequency response (BF, see Ex-

perimental Procedures). We also collected responses to

2 kHz tones—those used in the psychophysical studies

of macaque induction (Petkov et al., 2003)—which were

not always close to the neurons’ BFs. This provided data

from a larger population. We saw similar, albeit expectedly

weaker, relationships in this data set (see Supplemental

Notes and Figure S1 in the Supplemental Data available

online). We also quantified several neuronal response

characteristics that seemed to contribute toward induc-

tion (see the Supplemental Notes and Table S1).

Simulated Peripheral Neuron Responses Cannot

Support Induction

To determine whether the results we have so far observed

simply reflect peripheral properties passed through the

auditory system, we provided our stimuli as input to a

cascaded peripheral processing model (see Experimental

Procedures, Simulation of Peripheral Responses). We
158 Neuron 54, 153–165, April 5, 2007 ª2007 Elsevier Inc.
then applied the same analysis for the simulated re-

sponses as we did for our A1 data.

Figure 8 shows an exemplary simulated peripheral

‘‘eighth-nerve neuron’s’’ response to the stimuli we used

to evaluate induction for A1 neurons. When the continuous

tone was used as a stimulus (in this case a 2 kHz tone cen-

tered at the ‘‘BF’’ of this simulated neuron), the model

showed a largely sustained ‘‘response,’’ with adaptation

following stimulus onset (Figure 8A). When a discontinuous

tone was used there was a cessation in activity with a

tone re-onset response following the gap in the tone

(Figure 8B). There was little variability in tone/gap re-

sponses for these simulated peripheral neurons. Impor-

tantly, this peripheral neuron responded strongly to the

interrupting noise by itself (Figure 8C), including when

this noise was added to a continuous (Figure 8D) or dis-

continuous (Figure 8E) tone. The TNSI value for this exam-

ple was negative (�0.62) showing that this example does

not support induction.

Our impression from this and other examples was that

the simulated peripheral neurons strongly responded to

the noise, causing highly negative TNSI values (which sup-

ports masking rather than induction). This was confirmed

by modeling a distribution of peripheral responses for neu-

rons whose tone frequency/best-frequency relationships

(Figure S1) matched those of the neurons sampled in A1

for Figure 7C. Thus, for stimuli containing interrupting

noise, we modeled an identical distribution (in number)

of ‘‘neurons’’ as collected for our sample of A1 neurons

(see Figure S1 and Experimental Procedures). The distri-

bution of interrupting noise TNSI resulting from the simu-

lated auditory nerve neurons had a highly negative median
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Figure 8. Simulated Peripheral Responses Support Only the Physical Properties of the Stimuli

Shown is a modeled ‘‘eighth nerve neuron’’ response to the stimuli used to assess induction in our A1 neurons. Here the tonal stimuli are 2 kHz tones

centered at the ‘‘BF’’ of the simulated neuron. For display purposes, the spontaneous ‘‘firing rate’’ is not shown. (A)–(E) is in the same stimulus/re-

sponse format as for Figures 3A–3E. (F) is as in Figure 7A, which schematizes the range of TNSI response values that can be obtained, including

how to interpret positive and negative values (positive values show that the response to the stimulus known to elicit induction are like those to a con-

tinuous tone; negative values that the response to this stimulus is as if only noise were presented). (G) shows the modeled distribution of peripheral

responses. Arrowhead shows the median, and the asterisk (*) shows the TNSI value for the example shown in (A)–(E).
(�0.77, Figure 8G). The median TNSI using surrounding

noise was similarly negative (median = �0.71, n = 92).

DISCUSSION

Using stimuli that cause auditory induction, the population

of neurons we sampled represented both the missing

tone segment and the occluding noise, both of which

are perceived during induction. Neurons representing the

missing tone segment responded to discontinuous tones

occluded by intense noise as if responding to complete

tones. Consistent with the model of Figure 2, this neural

code included both phasic responses that fail to detect

discontinuities and sustained responses that continue

through the occluded segment.

Population Codes: Perceiving a Complete Tone

and Noise

We observed many neurons representing the missing tone

segment in our inducing stimuli, although these were a mi-

nority of the neurons (63/179). There are two steps that led

to a reduction from the 179 total neurons to 63 signaling

the illusory segment. The first step was separating tone-
encoding (85/179) from noise-encoding (94/179) neurons.

The second step was the observation that a minority of the

tone-encoding neurons (22/85) responded as if a gap

were present in the tone.

During induction, both a continuous foreground (in our

case, a tone) and an interrupting noise are perceived.

Thus, to be consistent with the percept, the population

of neurons should represent both. A separate representa-

tion of tones and noise is consistent with the hypothesized

parallel analysis of sound bandwidth for a multispectral

wavelet-like analysis (Schreiner et al., 2000; Schreiner and

Sutter, 1992; Sutter, 2005). Using the tone-noise-similarity

index, we estimated that 94 neurons represented the

noise and 85 represented the tone. It is worth considering

that there are many intermediate bandwidth neurons in A1

(Recanzone et al., 2000; Schreiner et al., 1992), and many

of these can respond to both the tones and noise. Such

neurons could have TNSI values near 0. Thus, our ap-

proach of defining neurons with TNSI > 0 as representing

the tone and those with TNSI < 0 as representing the noise

likely results in some categorization errors.

Of the 85 putative tone-encoding neurons, 63 had pos-

itive tone-gap-similarity index values, indicating that they
Neuron 54, 153–165, April 5, 2007 ª2007 Elsevier Inc. 159
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responded more as if the deleted segment were present

(induction) than absent. Why then would we find 22/85

neurons with negative TGSI values? Some might result

from the classification errors in TNSI noted above causing

us to inadvertently sample noise-encoding neurons. Fur-

thermore, some neurons that represented the tone and

noise might have a noise response that caused a response

similar to the gap. These provide examples of how nega-

tive TGSI values could result from either statistical varia-

tion in responses (measurement noise) or reproducible re-

sponses caused by some neurons that encode both

foreground and background. In either case, this suggests

that there is some ambiguity in the neural code in A1 that

must be resolved. This type of ambiguity in a brain area

representing both foreground and background is inescap-

able and suggests some intriguing possibilities. First, the

transformation which creates induction might not be com-

plete at the level of A1. Second, an unbiased observer

might be able to decide based on the aggregate activity

of the population of foreground-encoding neurons. One

decision function can result from equal weighting of all

tone-encoding neurons’ responses, so a positive median

or mean TGSI from the distribution would lead to a deci-

sion that a continuous tone was present. Another possibil-

ity is greater weighting for neurons that more selectively

represent a tone (i.e., neurons with more positive TNSI

values). The aggregate of our data supports that A1

neurons represent the missing tone segment and the

inducing noise, consistent with the entire induction

percept.

Population Codes: The Importance of Multiple

Neuronal Response Types

While in this study we have found neurons that encode

missing tone segments, it seems unlikely that an isolated

population of ‘‘induction’’ neurons or a single response

type could account for all induction phenomena for two

reasons. First, induction has been found for every fore-

ground sound tested. Second, the ‘‘no discontinuity’’

and ‘‘sufficiency of evidence’’ rules demand different con-

tributions from different neuronal response types.

The general model, that a neuronal population should

respond as if the induced foreground and interrupting

noise were both present, is powerful because it does not

depend on any single response type or physiological

mechanism and therefore can be applied to any fore-

ground sound. For the specific case of tonal foregrounds,

this leads to a simplified model (Figure 2): onset and offset

responses fail to detect the transitions in tones, and sus-

tained response neurons continuously respond through

the induced segment, which comply with both the no dis-

continuity and sufficiency of evidence rules. These condi-

tions were both met by our results.

The psychophysical data supporting the two induction

rules indicate that both sustained and phasic responses

are important for induction. For an illusory inducing stimu-

lus (Figure 1D), if neurons responding to tone onset fired at

the reintroduction of the tone (reporting discontinuity) and
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sustained responders continued to respond as if a contin-

uous tone were present (reporting a continuous tone), the

brain would have to resolve whether the tone actually con-

tinued through the noise. Evidence of tone onset/offset

appears to weigh heavily in such resolution because psy-

chophysical evidence of discontinuity in the tone disrupts

induction (Bregman and Dannenbring, 1977). This makes

sense because the noise contains energy at the tone fre-

quency, so whether that energy comes from the tone or

noise is ambiguous. If there is clear evidence of tone offset

or onset at the gap, this resolves the ambiguity and sug-

gests that the noise energy does not belong to the tone.

But if only phasic neurons were present in a population,

their decreases in activity might be erroneously inter-

preted as signaling the absence of a stimulus. However,

within a population of neurons this reduction in activity

can carry important information (Newsome et al., 1989),

as long as some neurons, such as sustained responders,

indicate the continuing presence of the sound. In this

case, a decrease in activity can be just as informative as

an increase because it supplies complementary informa-

tion. If the brain were only to consider sustained re-

sponders, problems would also arise. A1 neurons must

encode many sounds, so even an increase in activity

may ambiguously represent different sounds or sound

features. Thus, the joint activity from different neural re-

sponse types can disambiguate the different sounds or

sound mixtures that either class individually might not.

Relationship to Masking

To what degree are processes akin to perceptual masking

responsible for the interrupting noise results? Although re-

moval of responses to transients can be thought of as

a form of masking, simple peripherally mediated energetic

masking (where a very loud continuous noise eliminates

perception of a fainter foreground sound) cannot be re-

sponsible for the A1 results. Such energetic masking is

commonly associated with auditory nerve responses,

where large isolated excitatory noise responses dominate

combined noise/tone responses (Rhode et al., 1978). The

result is that the weak response produced by the low-

intensity tone cannot be extracted from the much larger

response created by the loud noise. We suspected the

auditory nerve would only show a masking and not an

induction correlate. The TNSI distributions obtained from

our simulations of auditory nerve responses demon-

strated highly negative TNSI values consistent with mask-

ing, i.e., responses more similar to the noise than the tone.

In contrast, when recording in A1 using illusory inducing

stimuli, more positive TNSI values were observed. This ar-

gues that factors other than known energetic masking

properties of the periphery are contributing to the cortical

responses. While we can rule out this simple form of

masking, it is not unreasonable to predict that other

more complex forms of masking, such as backward

masking (Brosch et al., 1998; Pickett, 1959), contribute

to induction.
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Mechanisms of Auditory Induction

We have shown that the responses of A1 neurons are con-

sistent with induction and the simulated auditory nerve re-

sponses are not. An outstanding question is how do these

cortical response properties arise and where in the brain?

Our experiments were designed to address whether A1

activity represented the illusory sound segment, not nec-

essarily to determine the mechanisms creating them. A1

was chosen as an initial area of study because it lies at

the boundary between early and late processing of sound.

From a cognitive neuroscience perspective, and because

of the results of lesion studies suggesting the involvement

of auditory cortex in conscious perception of sounds, e.g.,

Graham et al., 1980; Michel et al., 1980, A1 might be

thought of as an early processing stage for encoding a per-

ceptual phenomenon like induction. However, from an au-

ditory physiology and mechanistic perspective, A1 might

be thought of as a higher station in the auditory system

that obtains many of its properties subcortically. By

choosing A1, our results provide a crucial starting point

for mechanistic studies studying in more detail how and

where the response properties that we report in cortex

are created and for performing studies in higher cortical

areas to look for changes in these representations.

We stated in the Introduction that the continuity illusion

results from trying to perceptually organize a potentially

ambiguous sound signal into auditory objects. To illumi-

nate how different brain areas might contribute to group-

ing sounds, we might look to another psychophysical ex-

ample that involves perceptual grouping, comodulation

masking release (CMR). CMR describes an increased

ability to detect an unmodulated tone in the presence of

a modulated noise when the noise is comodulated across

bandwidth. As the envelope of the noise is confirmed

across more frequency bands, it becomes easier to per-

ceive the tone as a distinct object and to detect it. There

is evidence for important contributions to CMR at the level

of the cochlear nucleus (Pressnitzer et al., 2001), with pro-

gressive refinement and improvement of CMR-related

properties with ascension up to A1 (Las et al., 2005). How-

ever, we cannot assume the same holds for induction. Al-

though both induction and CMR are related to perceptual

grouping, CMR and induction are very different perceptu-

ally and use very different stimuli. Therefore, while the pre-

vious CMR studies potentially provide a framework from

which to view our induction results, CMR cannot directly

speak to the neural origins of the cortical responses we

see. The question of where the response properties that

we observe are created can only be addressed by record-

ing from many auditory stations. Still, it is an intriguing

possibility that similar progressive refinement along the

auditory neuroaxis might occur for induction and that au-

ditory cortex might play a pivotal role in generating the

representation of auditory objects (Nelken et al., 2003).

In addition to asking where these response properties

arise, one can ask how they are created. Our findings

highlight that induction requires coding multiple sound

properties, through several neuronal response types,
and suggest the involvement of multiple cellular mecha-

nisms. Explanations of the results can be made by de-

scribing how neurons respond to the time-varying stimu-

lus spectrum and/or to the stimulus envelope. With

respect to the time-varying frequency spectrum, the ex-

amples that we report lead to several intriguing possibili-

ties, including but not limited to different nonlinear inhibi-

tory effects (Figures 4 and 5) as well as disinhibition or

facilitation (Figures 3 and 6). However, there are a plethora

of possible alternative explanations, and at this point it

would be premature to speculate. Additionally, we ob-

served a much wider variety of responses than the most

prominent examples shown here, typical of the heteroge-

neity of A1. Despite the heterogeneity of responses, the

population of sampled neurons responded in a manner

consistent with the induction percept. An advantage of

our approach is that, regardless of the exact mechanisms

shaping the induction-related responses, our analyses

make it possible to evaluate the relationship between

the responses of the population of A1 neurons and induc-

tion. This was achieved by comparing responses to the

stimuli that cause induction to responses to individual

stimulus components that were either physically present

in the inducing stimulus or those that were perceived by

subjects listening to the inducing stimulus. Ultimately, to

reveal the mechanisms responsible for the observed cor-

relate of induction will require recording from multiple

brain regions and performing intracellular recording

experiments.

The diversity of the observed induction-related re-

sponses with tonal foregrounds suggest that the ecologi-

cal pressure to maintain stable representations of inter-

rupted sounds is important enough that it has been

selected upon or acquired through multiple neuronal en-

coding mechanisms. As such, searching for the induction

neuron, single brain region responsible for induction, or

single cellular mechanism responsible for induction might

turn out to be a futile endeavor.

Auditory Induction and Attention

Many studies show that certain forms of auditory induc-

tion appear to be a fairly automatic process that can occur

outside the focus of attention (Bregman, 1990; Micheyl

et al., 2003). Further, our behavioral work in monkeys (Pet-

kov et al., 2003) supports the idea that induction cannot be

entirely overridden by attention. There the animals were

unable to overcome the illusion despite being rewarded

for detecting a gap in the sound. These results argue

that some aspects of induction might be due to process-

ing ‘‘early’’ in the auditory system where the influence of

‘‘top-down’’ cognitive control is not as strong as in nonpri-

mary areas of human auditory cortex (Grady et al., 1997;

Petkov et al., 2004; Pugh et al., 1996). Such a viewpoint

is also consistent with EEG induction correlates found in

humans not attending sounds (Micheyl et al., 2003) and

with cortical-based modeling of induction at the initial

stages of auditory cortex (Husain et al., 2005).
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On the other hand, there is evidence that some forms of

induction can utilize feedback connections. For example,

induction with speech is thought to also invoke feedback

(Sivonen et al., 2006). Other forms of perceptual grouping

are known to build up over time and can be influenced by

the redirection of subjects’ attention (Carlyon et al., 2001).

Such an attention effect has yet to be demonstrated with

tonal foregrounds, however, and would likely be comple-

mentary to the automatic processes already reported. Be-

cause these monkeys were passively listening, we believe

the present results provide a basis for understanding the

‘‘preattentive’’ foundations of perceptual induction, with-

out assuming induction arises in A1 or excluding the pos-

sibility of further top-down modulation in higher areas.

Summary and Conclusions

In summary, our results support that, under conditions

that produce induction, the illusory tone segment is repre-

sented in A1. Of the major types of neurons investigated in

this study, all three responded as if the tone were pres-

ent—offset responders fail to encode gap initiation, sus-

tained responders provide activity as if the tone contin-

ued, and onset responders fail to signal the gap’s

termination. This result is consistent with two principles

of induction (Bregman, 1990; Bregman and Dannenbring,

1977; Houtgast, 1972): (1) there should be no neural evi-

dence of gap onset/offset, and (2) during the noise, neural

activity should be indistinguishable from activity that

would have occurred had the tone actually continued.

We conclude that A1 neurons demonstrate the brain’s

ability to compensate for transient noise in the environ-

ment by ‘‘filling-in’’ segments of sounds occluded by

noise.

EXPERIMENTAL PROCEDURES

Stimuli

Stimuli, presented from speakers (O’Connor et al., 2000, 2005; Petkov

et al., 2003) placed 1.5 m from the animal, were identical to those pre-

viously reported for tonal foregrounds used in psychophysical experi-

ments (Petkov et al., 2003) except that the frequency of the foreground

could also be set to the best frequency of the recorded activity (see

Figure S1). The foreground was a 45 dB SPL (unfiltered calibration,

Brüel & Kjær 2231 sound level meter) 400 ms tone (cosine ramped, 8

ms rise/fall times), with a sample frequency of 50 kHz, or in the cases

of the tone frequency being higher than the Nyquist frequency, at 100

kHz. Transitions into and out of the silent gap—temporally centered in

the tone—had 3 ms rise/fall times. The gap duration—silent portion

plus transitions—was 56 ms. Noise (broadband, 25 kHz cut-off) was

calibrated in RMS level (dB SPL, re 20 micro Pascals). Interrupting

noise was unramped and temporally centered in the foreground, cor-

responding to noise presentation from 172 to 228 ms after initial fore-

ground onset. When a gap was present, this corresponded to noise

completely overlapping the gap (including ramps) but not the tone seg-

ments outside of the gap (Figures 1D and 3E). Surrounding noise (450

ms, including 25 ms onset/offset ramps reaching their plateau when

the foreground began, and beginning offset transition when the fore-

ground was completed) temporally encompassed the entire fore-

ground. In this paper, we only report results for 63 dB SPL noise con-

ditions. The noises within a given type and intensity were ‘‘frozen’’ so

that the only difference between continuous and discontinuous stimuli
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with noise was the presence or absence of a silent gap in the fore-

ground. Additionally, we presented the two noise types (interrupting

and surrounding, e.g., Figures 6C and 6F) in isolation and the continu-

ous and discontinuous tones in isolation so that responses to com-

bined tone/noise stimuli could be compared to responses to tones

and noise in isolation. Interrupting noise presented in isolation (e.g.,

Figures 3C, 4C, and 5C) was time aligned to its occurrence in the com-

bined stimuli (Figures 3D and 3E, 4D and 4E, and 5D and 5E) and in the

figures is aligned to start at time = 172 ms (e.g., Figure 3C).

Data Acquisition

Standard extracellular recording techniques were used to record from

the right hemispheres of two naive adult macaque monkeys, conform-

ing to the PHS policy on animal care. Subjects were on a restricted wa-

ter access protocol approved by the UC Davis animal care and use

committee. Extracellular recordings occurred with macaques awake,

seated, head restrained in a primate chair, designed to be ‘‘acousti-

cally transparent,’’ within a double-walled, sound attenuated, and

foam-lined chamber (IAC: 2.9 3 3.2 3 2.0 m3, internal). For further re-

coding and single-unit (spiking neuron) isolation details see O’Connor

et al., 2005.

We recorded from 304 single units with interrupting noise, of which

153 were also recorded with surrounding noise. We recorded with the

foreground frequency close to BF and at 2 kHz (the frequency used in

macaque psychophysics; Petkov et al., 2003), resulting in a sample of

494 and 210 neurons recorded with interrupting and surrounding

noise, respectively. Our analyses are either from neurons recorded

with the tone frequency close to BF (see Results, Figure 7), from the

entire sample (see Table S1 and Figure S1), or from a subdivision of

the sample based on the type of response of neurons to different

sounds (Figure S3).

For localizing recordings from A1, we first stereotaxically guided the

electrodes to A1’s relative anatomical position within the macaque au-

ditory cortex (Paxinos et al., 2000). Then we identified A1 by its re-

sponse latency, responsiveness to tones, and its direction of tonotopic

gradient for best-frequency responses to tones (Merzenich and

Brugge, 1973; Recanzone et al., 2000). The area extended by the tono-

topic gradient in the antero-posterior direction (Hackett et al., 2001)

and the medio-lateral extent of tone responsiveness (Rauschecker

and Tian, 2004) supported that recordings were from field A1.

Data Analysis

Determining a Neuron’s Best-Frequency Response

BF was determined using an interpolation method so as not to rely

solely on the response to a single tone frequency. This incorporated

the tone frequency eliciting maximal response (Sb, sum of spikes re-

sponse) and the responses to the two neighboring frequencies (Sa

and Sc, response to the neighboring lower and upper tone frequencies,

respectively). From these three responses we determined a weighting

factor as follows:

w = ððSb � SaÞ=ðð2 � SbÞ � Sa � ScÞÞ

Then BF was calculated:

BF = fa � 2^ðw �OctRangeÞ

where fa is the tone frequency (Hz) eliciting the Sa response and

OctRange is the range in octaves between fa and fc. In the case of

two frequencies with maximal responses, the BF was half way (in

octaves) between these two frequencies (e.g., w becomes 0.5).

We obtained a fairly even sample of BFs from our entire sample (on

an octave scale) ranging from 150 to 40,025 Hz. The relationship of

neuronal BF to the tone frequency used is shown in Figure S1A.

Tone-Noise-Similarity Index and Tone-Gap-Similarity Index

The TNSI was used to quantify how similar each single-unit’s response

to the discontinuous tone with intense noise (DTIN) was to the isolated

tone response (T) or isolated noise response (N):
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TNSI = ðA� BÞ=ðA + BÞ;

where A = j N – DTIN j and B = j T – DTIN j. N, DTIN, and T for the anal-

ysis presented in the paper was the response in spikes counted over

a time window as described below. When noise was used in isolation

(e.g., Figures 3C, 4C, and 5C), the window for counting spikes was

aligned with when it would occur in the combined tone/noise stimulus.

The TGSI was similar to the TNSI except in the above equation the

noise response (N) is replaced with the response to the tone with

a gap (G), so that A = j G – DTIN j.
Procedures for Comparing Responses

Many A1 responses have multiple components (inhibitory and excit-

atory) with high temporal precision. To prevent these responses from

opposing each other, four different procedures were used to compare

responses, each with their own advantages. Three involved choosing

a time window over which to count spikes, and one involved compar-

ing (correlating) entire peristimulus time histograms (PSTHs) without

choice of a time window. These spike-count and correlation measures

were then used to derive TNSI and TGSI values. All statistical tests with

TNSI and TGSI yielded the same results (for both significant and not

significant effects), regardless of which of the four procedures were

used. For Figures 3–7 and associated analyses in the text, we strictly

used the method based on a statistical criterion, where all neurons

that contributed could be said to significantly encode gaps in tones.

Elsewhere, we also report results using the other methods, including

those from the entire sample, in Table S1 and the Supplemental Data.

For the methods in the paper, a statistical criterion was used to de-

fine the time window over which to count spikes. First, a difference

PSTH (5 ms bins, 50 stimulus repetitions) was created by subtracting

the discontinuous tone (without noise) PSTH from the continuous

tone (also without noise) PSTH. Then a neuron was evaluated only if

this difference PSTH, following the onset of the gap, had a maximum

(of absolute value) that was significant. The statistical criterion was

that two consecutive bins be two standard deviations (SD) above the

prestimulus ‘‘spontaneous’’ activity or that one bin be four SDs above

spontaneous activity. If this criterion was met, the starting and ending

points of the window were determined by finding, in both directions

from the maximal bin, the third consecutive bin that was below two

SD; the analysis window was identified as starting and ending on these

bins. The distribution of these response windows showed a narrow

median width of 75 ms with a median starting position of 241 ms fol-

lowing tone onset (69 ms after gap onset). We also counted spikes

fired to the two types of noise within these windows and saw that

more spikes were elicited by the short-duration interrupting noise (me-

dian 9.9 spikes) than the longer duration surrounding noise (median 5.3

spikes), differing at the p < 0.05 level (K-S test). This rules out that more

negative TNSIs for surrounding noise were due to larger excitatory re-

sponses to the longer-duration noise.

This method may be preferred for evaluating neurons involved in in-

duction because it selects a narrow statistically based window of the

response to the gap, without considering the noise responses. The

method selects the neurons that show that they can discriminate con-

tinuous from discontinuous tones in a statistically significant manner

and therefore those most likely to represent the studied foreground

differences.

Classifying Tone Responses

We objectively classified tone responses as a prior classification of

macaque A1 responses (Recanzone, 2000). We windowed the tone

stimulus response into three intervals: early (0–200 ms), late (200–

400 ms), and offset (425–625 ms). Significant responses (two bins

above two SD or one bin above four SD of the baseline activity) occur-

ring within the early interval were identified as ‘‘phasic-onset’’ re-

sponses. ‘‘Phasic-offset’’ responses were defined as significant re-

sponses in the offset interval. ‘‘Sustained’’ (excitation) responses

were identified as significant responses occurring in both the early

and late periods. Sustained inhibition was difficult to detect using

our standard statistical criterion (these responses were usually close
to the mean spontaneous level); thus, we assigned inhibitory re-

sponses to the ‘‘sustained’’ category if they were below the mean

spontaneous level for more than 65 ms.

Statistical Analyses

To test whether interrupting versus surrounding noise distributions dif-

fered (e.g., Figure 7C versus 7B), we used the nonparametric Kolmo-

gorov-Smirnov (K-S) test, which allows non-normally distributed data

to be tested. A nonparametric test such as this was also important be-

cause the sample size for the surrounding noise distribution was

smaller due to oversampling of neuronal data for the stimuli containing

interrupting noise. Results were statistically the same (for significant, at

p < 0.05, or not significant effects) when also using the more common

nonparametric Mann-Whitney test. Although the K-S test is sensitive to

differences in shape as well as central tendency, it seemed our effects

were largely based on differences in central tendency, since subtract-

ing the mean or median of the distributions between interrupting and

surrounding noise (see Figures 7B and 7C) removed the significance

of the observed differences. For testing whether a single distribution

differed from zero, we used a one-sample t test (two-tailed prediction)

and a one-sample K-S test of uniformity in the distribution.

Simulation of Peripheral Responses

We used Malcolm Slaney’s Auditory Toolbox (version 2), which is

coded in Matlab and implements a number of models of peripheral

processing (Slaney, 1998). Using the toolbox, we implemented a cas-

caded model to obtain simulated responses of auditory (eighth) nerve

fiber/neuron responses. The first component of the model is an audi-

tory filter bank proposed by Patterson and colleagues (Patterson

et al., 1992, 1995; Slaney, 1993), which uses a g tone bank of auditory

filters with an equivalent rectangular bandwidth based on measure-

ments of critical bands (ERB; Glasberg and Moore, 1990). This models

basilar membrane motion, which will elicit potentials in the inner hair

cells, the output of which can be considered a narrow-band auditory

filter or channel. Here we used 75 channels, with upper and lower fre-

quencies matching the range of BFs found in our A1 neuron samples.

The second ‘‘Meddis’’ component (Meddis, 1986; Meddis et al., 1990)

was added at the output stage of the ERB filterbank (Slaney, 1998).

This model simulates response properties such as adaptation follow-

ing stimulus onset. Standard parameters for this model were used

(Meddis et al., 1990; Slaney, 1998). The output of this model is the

spike probability of an auditory nerve fiber, i.e., eighth nerve neuron.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/54/1/153/DC1/.
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