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G. (2011). Nat. Neurosci. 14, 1174–1181.

Schomburg, E.W., Fernández-Ruiz, A., Mizuseki,
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Let Music Sound while She Doth Make Her Choice
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To attract females during courtship, Drosophila melanogaster males sing songs with motifs of varying tem-
poral structure. In this issue of Neuron, Clemens et al. (2015) identify a song feature indicating male fitness
and propose a neural mechanism for how it may be extracted from the auditory signal by female flies.
Probably the most important way that an-

imals use acoustic signals is to advertise

their sexual fitness. Mapping out how

such vocalizations drive conspecifics’ ac-

tions is difficult because both the acoustic

signal and the response may be complex.

However, the response of females to

the songs sung by male Drosophila mela-

nogaster fruit flies during natural courtship

(von Schilcher, 1976) may be an example

of natural decision-making behavior with

just the right combination of patterned

stereotypy, well-defined behavior, and

readily quantifiable variability to allow

this particular case to be resolved.

Drosophila courtship songs are com-

posed of bouts of singing interleaved with

long pauses, with each song bout itself

consisting of two song modes: sine song

(a low-frequency ‘‘humming’’) and pulse

song (a seriesof short pulsesof highampli-

tude) (vonSchilcher, 1976) (Figure 1A). The

songs of different species typically differ in

the intervals between pulses during pulse

song (Ritchie et al., 1999). Coen et al.

(2014) recently demonstrated through a

robust statistical analysis that much song
variability within a species, previously

thought to be random, could be explained

by the male fly’s recent sensory experi-

ence during courtship with a female. The

authors of a new study in this issue of

Neuron (Clemens et al., 2015) have now

performed a detailed analysis of the song

patterns produced by the male and corre-

sponding female responses to determine

what song features appear to contain the

fitness information that the female uses

to decide whether to mate. Further, by

characterizing neural responses during

passive listening, they were able to pro-

pose a neural algorithm for the extraction

of these relevant patterns.

To identify which song features influ-

enced female behavior (i.e., indicated

male fitness) most, Clemens et al. (2015)

recorded both the male songs and female

walking speed while male and female flies

engaged in natural courtship. They then

correlated each of several hand-picked

song features (suchassongboutduration,

sine song duration, pulse song duration,

interpulse interval, etc.) with female speed

and showed that theduration ofmale song
bouts was the most important factor gov-

erning the female’s slowing down (taken

as an approximate measure of attraction).

To understand the neural mechanisms

by which the female’s nervous system

extracts such features from the full audi-

tory signal and transforms them intooutput

motor decisions, the authors patch-

clampednonspikingneurons in theventro-

lateral protocerebrum (VLP) and antennal

mechanosensory and motor complex

(AMMC) in the antennal lobe of immobile

females exposed to both artificial and nat-

ural song segments. The experimenters

used the results to build adaptive linear-

nonlinear neural models that predicted

membranepotential asa functionof recent

song history. Most neural responses were

surprisingly simple: they could be pre-

dicted by simply linearly filtering the song

stimulus, although including an adaptation

term did improve the model slightly. The

bank of neural filters spannedawide range

of timescales and had a slightly biphasic

character. These responses were very

consistent across different stimulus

types. This high predictability allowed the
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Figure 1. Drosophila Courtship Songs and Decision-Making Process
(A) Examples of Drosophila melanogaster courtship song with pauses, bouts, sine mode (blue), pulse
mode (red), and interpulse interval (IPI) indicated (reproduced from Clemens et al., 2015).
(B) The cyclical decisionmaking process during Drosophila courtship.

Neuron

Previews
experimenters to infer the female VLP and

AMMC activity during naturalistic court-

ship behaviors, during which patch-clamp

recording is extremely difficult. This in turn

allowed the construction of a potential

decoder by which the AMMC/VLP repre-

sentation of song might be transformed

into motor signals controlling the female’s

walkingspeed.For this, thebimodalnature

of the filter turned out to be key. By sepa-

rately rectifying the positive and negative

filter outputs, a decoder could extract

two distinct song features, the total

amount of song and the number of bout

onsets, froma single input signal. The ratio
of these two signals yields the important

variable—the bout duration. Multiplicative

and divisive combination of neural signals

is a frequently occurring motif, e.g., in

normalization (Carandini and Heeger,

2012) and in computations like looming

(Gabbiani et al., 2002). An explicit repre-

sentation of this computed variable and

the decision process itself is yet to be

found. However, together with the lab’s

work characterizingmale songmodulation

(Coen et al., 2014), this work provides the

skeleton of an elegant cyclical description

of the male-female decision-making pro-

cess during courtship (Figure 1B).
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Currently, compromises are inevitable in

simultaneously recording neural activity

and natural behavior: often the animal’s

free movement must be restricted to allow

precise recording. Thisworkdemonstrates

how computational modeling can be used

to transcend these limitations: instead of

recordingbothactivity andbehavior during

a single experiment, in this case the exper-

imenters observed that the simplicity of the

neural responses strongly implied that re-

sponses recorded during passive listening

could be usedas a surrogate for those dur-

ing active behavior. This is certainly the

hope driving studies of insect behavior,

such as flying odor tracking, in tethered

preparations (e.g., Bhandawat et al.,

2010), as recording from neurons while

flies are actively flying in a wind tunnel is

at present impossible. Of course, this

technique relies strongly on the assump-

tion that the response models generalize

across behavioral conditions, in particular

that the female’s locomotion does not

modulate neural responses to song. Flight,

for example, is known to affect the gain, if

not the tuning, of visual responses (Mai-

mon et al., 2010); here a future challenge

will be to demonstrate that locomotion or

engagement in courtship does not affect

the filter structure and timescales of these

auditory responses.

The relatively simple structure of

Drosophila song and the easily quantifi-

able courtship responses provide an op-

portunity to gain a rich understanding of

this important example of decision-mak-

ing. What might be necessary to achieve

this level of understanding of other sen-

sory decision paradigms in which the

input signals are more complex and the

behavioral choices harder to identify?

There are twomajor challenges to framing

such a decision-making process in natu-

ral behavior. One is to segment behavior

into discrete states, such that ‘‘decisions’’

are transitions between these states,

driven by sensory input. The other is to

identify the sensory signals that are maxi-

mally informative about the decisions.

Here, the authors took advantage of the

fact that Drosophila songs are clearly

composed of sequences of stereotyped

motifs (pulse song, sine song, pause)

and that behavioral responses could be

well-described by walking speed alone.

In the general case, one would like to

use the data to discover low-dimensional
tember 23, 2015 ª2015 Elsevier Inc. 1127
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or discrete representations of the rele-

vant variables. However, while machine-

learning algorithms do exist to segment

arbitrary signals, such as the movements

of honeybees or fruit flies, into statistically

differentiated dynamical regimes (Fox

et al., 2009; Berman et al., 2014), these

techniques are often only useful when

segments are already identifiable by eye

and one simply seeks to automate the

segmentation process. Ideally, one would

like to learn reduced representations of

two or more predictively linked variables

(e.g., stimulus and behavior) simulta-

neously. One such ‘‘dual dimensionality

reduction,’’ based on the method of par-

tial least-squares, a variant of cross-cor-

relation analysis, was recently used to

identify coding principles involved in con-

trol of flight muscles in the hawkmoth

(Sponberg et al., 2015). Other ‘‘dual’’

methods of simultaneously identifying

simple representations of both input and

output, such as coclustering (Dhillon

et al., 2003), may also prove useful in the

analysis of future data sets. Indeed, such
1128 Neuron 87, September 23, 2015 ª2015
an analysis may reveal that the walking

trajectories of female flies during court-

ship are best described not as sequences

of speeds but rather as song-feature-

dependent transitions among a discrete

set of movement states, as is observed

in male ‘‘dances’’ during courtship

(Spieth, 1974). The recent work of Clem-

ens et al. (2015) provides great encour-

agement that the neural substrates that

govern such sensory-driven decisions

will be decodable.
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Real-life decisions often involve multiple intermediate choices among competing, interdependent options.
Lorteije et al. (2015) introduce a new paradigm for dissecting the neural strategies underlying such decisions.
Decisions in the laboratory typically require

a single choice, between two or more

options. But in real life, decisions are often

hierarchical, requiring multiple choices

that define a path through a decision tree.

Hierarchical decisions can be made with

an explicitly serial strategy—choosing

one of the highest-level branches first,

then moving on to lower-level decisions

within that branch. This happens, for

example, when we use a phone app to

choose a restaurant by picking a neighbor-

hood first, then choosing a cuisine avail-

able in that neighborhood, then a price
point within the range for that cuisine, etc.

(Figure 1A, ‘‘Serial’’). The serial strategy

saves time and effort—at each choice

point, we eliminate the need to consider

anything further down the non-chosen

branches.

But what happens if we make a more

rapid and intuitive decision about where

to eat? The decision is certainly influ-

enced by the same interacting factors—

where we feel like traveling, what we feel

like eating, how much we want to spend.

Our internal decision-making process

could follow the same steps, deciding on
a neighborhood first, then a cuisine, etc.

But that sounds a bit clunky and suspi-

ciously digital. Shouldn’t our extremely

parallel wetware use a more parallel

strategy? Maybe our brains should

compare all restaurants at once, rating

each based on a combination of neigh-

borhood, cuisine, and price. This amounts

to evaluating all possible paths through

the decision tree in parallel (Figure 1B,

‘‘Parallel Path’’). It might work, if we only

know a few restaurants. But most of us

know dozens at least, and comparing

them all simultaneously would be a tall
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