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SUMMARY

Brains are optimized for processing ethologically
relevant sensory signals. However, few studies
have characterized the neural coding mechanisms
that underlie the transformation from natural sensory
information to behavior. Here, we focus on acoustic
communication in Drosophila melanogaster and
use computational modeling to link natural courtship
song, neuronal codes, and female behavioral re-
sponses to song. We show that melanogaster fe-
males are sensitive to long timescale song structure
(on the order of tens of seconds). From intracellular
recordings, we generate models that recapitulate
neural responses to acoustic stimuli. We link these
neural codes with female behavior by generating
model neural responses to natural courtship song.
Using a simple decoder, we predict female behav-
ioral responses to the same song stimuli with high
accuracy. Our modeling approach reveals how long
timescale song features are represented by the
Drosophila brain and how neural representations
can be decoded to generate behavioral selectivity
for acoustic communication signals.

INTRODUCTION

A central goal of neuroscience is to understand how the natural

sensory stimuli that inform behavior are represented by the brain

(deCharms and Zador, 2000; Theunissen and Elie, 2014). To

solve this problem, much of the field has focused on optimal

coding theory, which posits that sensory neurons encode and

transmit as much information about stimuli as possible to down-

stream networks (Fairhall et al., 2001; Sharpee et al., 2006). How-

ever, these approaches rarely take into account the animal’s

tasks and goals. This presents a problem because, in addition

to representing stimuli as faithfully and efficiently as possible,

nervous systems must also reduce information to facilitate

downstream computations that inform behavior (Barlow, 2001;
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Olshausen and Field, 2004). In support of this, many sensory co-

des are often not ‘‘optimal’’ in the classical sense (Salinas, 2006).

For example, the increase in sparseness observed in many

systems can reduce stimulus information but greatly simplifies

decision making and learning by making behaviorally relevant

stimulus features explicit (Clemens et al., 2011; Quiroga et al.,

2005). Likewise, the generation of intensity or size invariant

codes is necessary for robust object recognition but involves a

loss of sensory information (Carandini andHeeger, 2012; DiCarlo

et al., 2012).

The best way, therefore, to understand sensory representa-

tions is to link naturalistic sensory stimuli, neural codes, and

animal behavior. This involves three steps. First, the stimulus

features and timescales important for behavior must be

identified. Second, the codes the brain uses to represent behav-

iorally relevant stimulus features (‘‘encoding’’) must be charac-

terized. Third, the relationship between neural representations

and animal behavior (‘‘decoding’’) must be defined.

Accomplishing all of this is challenging for most natural behav-

iors because it is difficult to recapitulate them in a fixed prepara-

tion in which neural codes can be recorded. We address

this challenge here by using computational modeling as a link

between natural behavior and neural codes recorded in non-

behaving animals.

We focus on the acoustic communication system of

Drosophila. The Drosophila brain comprises a small number of

neurons; this feature combined with genetic tools facilitates

identifying individual neurons and neuron types for recordings.

In Drosophila, acoustic communication occurs during courtship:

males chase females and produce patterned songs in response

to dynamic sensory feedback (Coen et al., 2014). Courtship un-

folds over manyminutes, and females arbitrate mating decisions

based in large part on features present in male courtship songs.

Numerous patterns on timescales ranging from tens of millisec-

onds to several seconds are present within song (Arthur et al.,

2013); how females process and respond to these timescales

of auditory information has never before been addressed. We

do this here using a large behavioral dataset of simultaneously

recorded song and fly movements during natural courtship.

To determine how the brain represents courtship song

information, we performed in vivo intracellular recordings

from auditory neurons in the Drosophila brain. The antennal
.
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mechanosensory and motor complex (AMMC) is the primary

projection area of fly auditory receptor neurons (termed John-

ston’s organ neurons [JONs]) (Kamikouchi et al., 2006). The

two major populations of sound-responsive JONs terminate in

AMMC zones A and B (Kamikouchi et al., 2009; Yorozu et al.,

2009). Recent studies have mapped several of the central neu-

rons that innervate these zones (Lai et al., 2012; Vaughan

et al., 2014) and have found that most project to a nearby neuro-

pil termed the ventrolateral protocerebrum (VLP). Projections

from the VLP to other brain regions remain uncharacterized

(but see Yu et al. (2010)). While genetic tools exist that label

many AMMC or VLP neurons (Pfeiffer et al., 2008), only a handful

have been functionally characterized (Lai et al., 2012; Tootoo-

nian et al., 2012; Vaughan et al., 2014). Here we sample a larger

population of AMMC and VLP neurons and generate computa-

tional models that effectively recapitulate responses to natural-

istic stimuli.

To link neural codes in the AMMC and VLP to the female’s

behavioral response to song, one would ideally record neural

activity during behavior. However, recording techniques can

disrupt the highly dynamical interactions that occur during social

behaviors like courtship. Moreover, in vivo neural recordings

from the Drosophila brain are typically too brief in duration to

present a large battery of natural song stimuli. We thus use

computational modeling to infer links between the neural codes

for song in the AMMC/VLP and female behavior. That is, using

our model of stimulus encoding, we generate neuronal re-

sponses to the song stimuli recorded during natural courtship

as a substitute for direct recordings. Based on these surrogate

neural responses, we predict female behavior using simple

transformations. Our study reveals an unexpected behavioral

selectivity for song structure on long timescales in Drosophila

females. Using our encoder/decoder approach, we find that

of the two major computations in AMMC/VLP neurons, only

one—biphasic filtering—is necessary to explain the female

responses to courtship song, while the other—adaptation—is

dispensable. Finally, we propose a putative circuit that can

extract behaviorally relevant song features from AMMC/VLP

responses and transform them into the female behavioral

response.

Results
Identifying the Courtship Song Features that Drive

Female Song Responses

Drosophila melanogaster courtship song comprises two modes,

sine and pulse, andmales typically alternate between production

of thesemodes during a song bout (Figure 1A). During courtship,

males produce many song bouts prior to copulation with a

female; females may therefore be sensitive to a range of time-

scales that characterize courtship song, from the short spe-

cies-specific spacing between pulses within pulse mode, known

as the inter-pulse interval (IPI), to the long pauses between bouts

(Figure 1B). Previously, we showed that the more sine or pulse

song a male produces, the more a sexually receptive female

slows down (thus producing a negative correlation between

song amount and female speed) (Coen et al., 2014). We re-

analyzed this dataset of song and simultaneously tracked fly

movements from 315 male-female pairs to examine female
Neu
responsiveness to various song features and timescales (Fig-

ure 1C). This dataset corresponded to �4,000 min of courtship

between wild-type males of eight different melanogaster strains

and females genetically engineered to be both pheromone

insensitive and blind (PIBL). This genetic manipulation maxi-

mizes the salience of song for these females.

We first considered the total amount of song and average fe-

male speed within a given time window (Figure 1D, orange,

rank correlation(r) = �0.22); this correlation began to saturate

at time windows of�60 s (Figure 1F, orange), even for non-over-

lapping windows (Figure S1D). This suggests that song informa-

tion affects females on timescales much longer than the duration

of a single song bout. The correlation between song and female

speedwasmostly abrogated by deafening the female (Figure 1D,

blue), which demonstrates this relationship is dependent on

hearing the male song. While previous studies suggested the

importance of IPI for female receptivity (Bennet-Clark and Ewing,

1969; von Schilcher, 1976), we found no correlation between fe-

male speed and IPI (Figure 1E, r = 0.01); this was true for both

short and long time windows (Figure 1F, black). This suggests

that the range of IPIs produced by conspecificmales (of the eight

geographically diverse strains we examined) is too narrow rela-

tive to the female preference function for IPI to strongly modulate

female speed. We next asked whether females are sensitive to

other conspecific song features within the 60 s time window of

integration (Figure S1A). We found that most song features

were significantly correlated with female speed (Figure 1G), likely

due to correlations between song features (Figure S1B); how-

ever, bout duration was most strongly correlated with female

speed (Figures 1G and 1H), and this relationship was inde-

pendent of other features (Figure S1C). This suggests that

melanogaster females evaluate the structure, not just the total

amount, of male song.

Whole-Cell Patch Clamp Recordings from AMMC/VLP

Neurons in the Female Brain

To determine how the female brain encodes male song struc-

ture, we recorded from a subset of neurons innervating the

AMMC and VLP neuropils; these neurons represent the first

relays for processing courtship song in the brain (Figure 2A).

We hypothesized that computations within these AMMC/VLP

neurons should support the encoding and extraction of behav-

iorally relevant song features like bout duration. To link neural

responses with our behavioral dataset (Figure 1), we used a

computational modeling strategy (Figure 2B). We built an

encoder model that captures the stimulus transformations im-

plemented by AMMC/VLP neurons, and we used it to predict

the responses to natural courtship song from our behavioral

dataset. We then fit a simple decoder model to predict female

speed from the encoder representation of song.

We first identified genetic enhancer lines that labeled AMMC

and VLP neurons by screening images of GFP expression from

> 6,000 GAL4 lines generated by the Dickson lab (B.J.D., unpub-

lished data; Kvon et al., 2014). Two recent studies identified

several of the neuron types innervating the AMMC and VLP

(Lai et al., 2012; Vaughan et al., 2014). Our screen identified

some of these neuron types, in addition to several new ones

(Table 1). Systematic electrophysiological recordings from the

full set of identified AMMC and VLP neurons are challenging
ron 87, 1332–1343, September 23, 2015 ª2015 Elsevier Inc. 1333
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Figure 1. Song Features Driving Female Behavioral Responses

(A) Structure ofDrosophila melanogaster courtship song. Song bouts consist of alternations between pulse (red) and sine (blue) modes; bouts are interleavedwith

pauses. Pulse song consists of trains of pulses, separated by species-specific IPIs.

(B) Courtship song is structured on multiple timescales. Left: The fraction of 1 min of courtship that consists of pulse song, sine song, and bouts. Middle: The

number (per one minute of courtship) of pulse songs, sine songs, and bouts. Right: The duration of IPIs, pulse songs, sine songs, bouts, and pauses. All plots

show median and inter-quartile range. We analyzed song from 3,896 min of courtship between females and wild-type males from eight geographically diverse

strains.

(C) Behavioral assay for recording male song and male/female movements (Coen et al., 2014).

(D and E) Behavioral preference function (see Experimental Procedures) for the amount of song (D) or IPI (E). We grouped the data into�100min bins (sorted by x

value) and plotted the mean ± SEM for each bin. Both female speed and song amount or IPI are z-scored for each male strain. To quantify the strength of

association between song features and female speed, we calculated rank correlations (r) from the raw, unbinned data. The correlation between song amount and

female speed is strongly reduced for deaf females ([D], blue trace).

(F) Absolute rank correlation between female speed and the amount of song (orange) or IPI (black) for varying time windows. Rank correlation with IPI is weak for

all window durations (all abs. r < 0.03). The curve for amount of song begins to saturate at�60 s. We therefore analyzed correlations between female speed and

song features in 60 s windows for all subsequent analyses.

(G) Rank correlation between eleven song features and female speed (see Experimental Procedures for definitions of song features). Song amount (orange)

negatively correlates with female speed while IPI (black) is uncorrelated. Bout duration (green) is most strongly associated with female speed.

(H) Behavioral preference function for bout duration.

See also Figure S1.
because many of these neurons are not accessible for patch-

clamp recordings in a preparation in which the antennae are

intact and motile (Tootoonian et al., 2012). We therefore

recorded from 15 different accessible neuron types (Table 1; Fig-

ure S2) from the pool of genetically labeled AMMC and VLP neu-

rons; if auditory responses in this sample were largely similar be-

tween cell types, this would suggest that these neural responses

are representative of the larger AMMC/VLP population.

We presented a broad range of stimuli during recordings (see

Experimental Procedures). However, 33% (5/15) of the neuron

types we recorded did not respond to any of our acoustic stimuli;

these neurons may be postsynaptic to non-auditory receptors

(Kain and Dahanukar, 2015; Otsuna and Ito, 2006; Yorozu

et al., 2009). The ten neuron types that responded to acoustic

stimuli included one AMMC local neuron (AMMC-B2), seven

candidate AMMC projection neurons (AMMC-VLP AV1–6 and

AMMC-AL AAL1), and two VLP local neurons (VLP V1 and V2)
1334 Neuron 87, 1332–1343, September 23, 2015 ª2015 Elsevier Inc
(Figure 2C). We confirmed that all recorded neurons innervated

the AMMC and/or VLP via imaging (Table 1; Figure S2; Movies

S1, S2, S3, S4, and S5).We found that auditory activity for almost

all responsive neuron types was characterized by graded

changes in membrane voltage (Vm) and not action potentials

(Figure 2D), as we had shown previously for neuron type

AMMC-AV6 (a.k.a. A1; Tootoonian et al., 2012). Four of the

sound-responsive cell types (AV1, AV3, AAL1, and V2) occasion-

ally produced spikes during responses to pulse trains (Figures

2D and S3A). Whereas the subthreshold responses of AV1 and

AV3 cells were evoked consistently across animals for a given

cell type, spikes were not (Figures S3A–S3E). For neurons that

we recorded from long enough to present all of our auditory stim-

uli, we were able to generate frequency and intensity tuning

curves (Figures S3F–S3H); these curves were similar across

cell types but were all distinct from the receptor neuron (JON)

population (Tootoonian et al., 2012), implying that subthreshold
.
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Figure 2. Auditory Responses in the AMMC/VLP

(A) Left: Projection areas of auditory neurons in the fly brain. Auditory receptor neurons project to the antennal mechanosensory andmotor center (AMMC, green).

From there, AMMC neurons project to different parts of the VLP—the wedge (red), anterior VLP ([aVLP], cyan), and posterior VLP ([pVLP], blue). Right: Skeletons

of neurons in our dataset; skeletons come from the FlyCircuit database of single neuronmorphologies (Chiang et al., 2011) andwere identified based on our fills of

recorded neurons.

(B) To reveal the neural computations linking song processing with female behavior, wemodel the female nervous system using an encoding and decoding stage.

The decoder is trained using the natural courtship data (song and associated female speed) to reproduce female behavioral responses to song from encoder

responses.

(C) Skeletons of individual neurons from our study (compare with [A]). We were not able to identify the V2 neuron in the FlyCircuit database, but the fill of this

neuron reveals diffuse arborization throughout the VLP (Movie S1).

(D) Baseline subtracted responses (changes in Vm) of ten types of AMMC/VLP neurons to synthetic pulse trains with IPIs of 30ms (black) or 120ms (gray). Vertical

bar (for each trace) corresponds to Vm scale (1 mV).

(E) IPI tuning turves (see Experimental Procedures). Plots show mean ± SEM. Number of recordings per cell type indicated in each panel.

See also Figures S2 and S3 and Movies S1, S2, S3, S4, and S5.
responses in AMMC/VLP neurons do not simply reflect the tun-

ing of the auditory receptor inputs. These data collectively sug-

gest that Vm changes (and not spikes) are likely to represent

the ‘‘auditory code’’ or output of these neurons. Like frequency

and intensity tuning, tuning for IPI was also relatively uniform:

the cell types we recorded from were either un-tuned for IPI

or responded more strongly to long IPIs (Figure 2E). While

other subsets of AMMC/VLP neurons may possess distinct

tuning from the neurons we recorded (Vaughan et al., 2014)

(see Discussion), the similarity of auditory responses among

the AMMC/VLP neurons in our dataset is striking and suggests
Neu
that our sample of neurons may represent computations com-

mon to auditory neurons in these two brain areas. To examine

these computations directly, we next generated models of

each recorded cell’s response.

A Computational Model to Predict AMMC/VLP Neuron
Responses
We constructed encoder models (see Figure 2B) to predict the

stimulus-evoked Vm changes of every recorded neuron (Fig-

ure 3A); these models were first fit to AMMC/VLP responses to

artificial pulse trains (Figure 2D) and then tested using a diverse
ron 87, 1332–1343, September 23, 2015 ª2015 Elsevier Inc. 1335



Table 1. Summary of Anatomical and Histological Information for All Recorded Neurons

Driver Line

Neuron Name Transmitters Anatomy

This Paper Alternatives Cholinergic GABAergic Cell Body Projections4

JO2 (NP1046),

VT049365

AMMC-B2 B21 no1 yes1 ventral AMMC (bilateral)

VT029306 AMMC-VLP1 (AV1) no no posterior AMMC (ipsilateral),

pVLP (bilateral)

VT050279 AMMC-VLP2 (AV2) no no ventral AMMC (ipsilateral),

wedge (ipsilateral),

aVLP (ipsilateral),

SEZ (ipsilateral)

VT050279 AMMC-VLP3 (AV3) no yes ventral AMMC (ipsilateral),

wedge (ipsilateral),

aVLP (ipsilateral),

SEZ (ipsilateral)

VT050245 AMMC-VLP4 (AV4) wedge-wedge PN2 no yes2 ventral wedge (bilateral)

VT029306 AMMC-VLP5 (AV5) no no posterior AMMC (ipsilateral),

wedge (ipsilateral),

aVLP (bilateral)

VT029306,

VT011148

AMMC-AV6 (AV6) aLN(GCI)3, A11 no1 no1 posterior AMMC (ipsilateral),

wedge (ipsilateral),

aVLP (bilateral)

JO2 (NP1046) AMMC-AL1 (AAL1) ventral AL (contralateral),

AMMC (bilateral),

SEZ (bilateral)

VT002042 VLP1 (V1) no no posterior pVLP (ipsilateral)

N/A VLP2 (V2) ventral VLP (ipsilateral)

VT020822 ventral

VT002600 no no ventral

VT010262 ventral

VT008188 posterior

VT000772 aPN33 posterior

SeeMovies S1, S2, S3, S4, and S5 and Figure S2 for additional information. Confocal stacks and z projections of the VT lines can be accessed at http://

brainbase.imp.ac.at. Ipsilateral/contralateral defined with respect to soma position.

Abbreviations: AMMC, antennal mechanosensory andmotor center; VLP, ventrolateral protocerebrum; aVLP, anterior VLP; pVLP, posterior VLP; SEZ,

suboesophageal zone.
1Tootoonian et al., 2012.
2Lai et al., 2012.
3Vaughan et al., 2014.
4Based on single neuron fills (with biocytin).
set of stimuli including excerpts of recorded courtship song. The

model used here is an extension of the standard linear-nonlinear

(LN) model (Schwartz et al., 2006). Commonly, LN models

consist of two stages: a linear filter that represents the neuron’s

preferred temporal feature and a nonlinearity that transforms the

filtered stimulus into a prediction of the neuronal response.

Because we observed a prominent response adaptation in

almost all of our recordings (Figure 2D), we added an adaptation

stage to the input of the LNmodel (Figures S4A and S4B), gener-

ating aLN models. Our implementation of the adaptation stage

is based on a model for a depressing synapse that can account

for multiple adaptation timescales (David and Shamma, 2013).

However, we remain agnostic about the biophysical basis

of adaptation in fly auditory neurons. All model parameters

were fit by minimizing the squared error (see Experimental

Procedures).
1336 Neuron 87, 1332–1343, September 23, 2015 ª2015 Elsevier Inc
We evaluated model performance by comparing predicted

pulse train responses to actual, single-trial responses for three

types of stimuli: (i) pulse trains (of varying IPI) used for fitting

the model (‘‘short pulse trains’’), (ii) a long (10 min) series of 1-s

pulse trains separated by pauses drawn from the natural distri-

bution present in D. melanogaster courtship songs (‘‘naturalistic

pulse trains’’), and (iii) excerpts of natural courtship song. r2

values for pulse train response predictions were high for all cell

types examined (r2 IQR 0.78–0.95) and were reduced by 10%

when excluding the adaptation stage of the model (Figure 3B).

Moreover, models without the adaptation stage failed to fully

reproduce the response decrease over a pulse train observed

in our recordings (Figure S5A). aLN models were also able to

reproduce responses to stimuli containing naturalistic bout

structure (Figures 3C and 3D); they reproduced the adaptation

observed within and across trains as well as the negative (offset)
.

http://brainbase.imp.ac.at
http://brainbase.imp.ac.at
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Figure 3. aLN Models Reproduce AMMC/

VLP Responses

(A) Structure of the aLN model; inputs were short

pulse train stimuli of varying IPI (see Figure 2D). The

stimulus envelope s(t) is processed by an adapta-

tion stage (a). The adapted stimulus s’(t) is then

transformed by a standard LNmodel with a filter (L)

and an input-output function or nonlinearity (N) to

yield a prediction of the Vm (green).

(B) Adding adaptation to the model improves per-

formance for all cells. Coefficient of determination r2

for aLN models = 0.92 (0.11), median(IQR), and for

LN models (without the adaptation stage) = 0.84

(0.21), p = 73 10�12, sign test, N = 32 neurons.

(C) An aLN model fitted to naturalistic pulse train

stimuli effectively predicts neuronal responses. The

stimulus (bottom trace) is a 10-min sequence of 1-s

pulse train bouts (IPI = 40 ms) with a natural distri-

bution of pauses between trains. AV1 neuron

response (black) and aLN prediction (green) for

same recording as in (A), r2 = 0.88.

(D) Assessment of the fits of the aLN model to

naturalistic pulse train stimuli (r2 = 0.78(0.18)

median(IQR), N = 12).

(E) aLN models predict responses to natural court-

ship song. Song envelope (bottom trace) and Vm of

an AV1 neuron (black, top trace) or prediction from

an aLN model fitted to short pulse trains (green

trace).

(F)Performanceof aLNmodels fitted tonatural song

(r2 = 0.59+/�0.19) versus the performance of aLN

models fitted to artificial short pulse trains and

testedwith natural song (r2 = 0.52+/�0.11) p = 0.50,

sign test, N = 20.

(G) Linear filters for all cells in the dataset. Color

scheme for different cells is also used in (H) and (J).

(H) Width of the positive filter lobe for all cells

(measured at half-maximal height, log scale).

Interquartile range of conspecific IPIs for

melanogaster is indicated.

(I) Ratio of the integral of the positive and negative

lobes of the linear filters (0.11(0.06), median(IQR)).

(J) Nonlinearities from aLN models.

See also Figures S4 and S5.
responses at bout ends (Figure S5). We next compared the per-

formance of models estimated using short pulse trains to those

estimated using recorded excerpts of natural fly songs, which

contain mixtures of sine and pulse song (Figures 3E and 3F).

The performance of the latter model constitutes an upper bound

for the performance of aLN models fitted to artificial pulse trains

when tested on recorded courtship songs. In general, model per-

formance was not significantly different from that upper bound

(Figure 3F). Overall, this suggests that our aLN model captures

the major aspects of AMMC/VLP encoding.

Strong similarities in model parameters across cell types

would indicate similar response properties in the AMMC/VLP

and would imply that the AMMC/VLP neurons we sampled are
Neuron 87, 1332–1343, Sep
likely to be representative of the full popu-

lation (but see Discussion). We observed

no strong qualitative differences in the

shapes of linear filters across the ten
sampled cell types (Figure 3G). All filters consisted of a domi-

nant, positive lobe that was as wide or wider than a prominent

feature of fly song, the IPI (Figure 3H). Filters of the same cell

type were more similar than those of different cell types, indi-

cating that filter shape was cell type specific (Figure S4C). Inter-

estingly, the filter durations of AMMC to VLP PNs (AV1–AV6) tiled

a wide range between 30 and 300 ms (Figure 3H), suggesting

that the AV neurons act as a filter bank with different low-pass

cutoff frequencies. 81% of the filters were also biphasic (i.e.,

they exhibited a relatively shallow but long negative component)

(Figures 3G and 3I). Althoughweaker than the positive lobe of the

linear filter, the negative lobe strongly affectedmodel responses:

removing the negative lobe from the filters (setting negative
tember 23, 2015 ª2015 Elsevier Inc. 1337
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Figure 4. Decoding Neuronal Responses to Predict Behavior

(A) AMMC/VLP responses to 1-min segments of natural courtship containing song (left below) are predicted using the aLN encoder. The predicted neural re-

sponses (middle below, cell type AV1) are then transformed (right below) and integrated to yield a prediction of the average female speed for that courtship

segment. The sigmoidal nonlinearity is optimized for the match between predicted female speed and actual female speed (see [B]). Positive responses are

strongly compressed (orange), and negative responses at bout ends are amplified (blue) by sigmoidal NL (see Figures S6A–S6D).

(B) For all 3,896 courtship windows, actual female speed versus predicted speed (from decoding a single AV1 neuron), r = �0.40. Although the original rank

correlation between decoder output and female speed is positive, we inverted the curve to match the plots in Figure 1.

(C) Rank correlations for actual versus predicted female speed for all 32 cells in the dataset. The sigmoidal NL improves the correlation for all cells (w/ sigmoidal

NL r = 0.38(0.04) (median(IQR)), w/o sigmoidal NL r = 0.19(0.02), p = 0, sign test). Dashed lines correspond to the absolute rank correlation between song amount

and female speed (r = 0.22; see Figure 1D). The decoder outperforms the correlation with song amount for all cells (p = 53 10�6, sign test), andmost cells (29/32)

perform worse than this correlation when decoded linearly (p = 3 3 10�6, sign test).

(D) Biphasic filtering—but not adaptation—is necessary for good predictions of female speed. aLN = full encoding model; LN = model lacking adaptation;

aN = model lacking filtering; aL+N = all negative weights of the linear filter set to zero. aLN versus LN p = 0.08, aLN/LN versus aN/aL+N p < 1 3 10�4, sign test,

p values Bonferroni corrected for four comparisons. The dashed line shows the absolute rank correlation between song amount and female speed.

Black circles in (C) and (D) indicate the performance values for the example neuron shown in (B).
weights to zero) diminished adaptation and abolished negative

offset responses (Figure S5C). Re-fitting the adaptation and

nonlinearity parameters did not fully restore model performance

(Figures S5D–S5F). Taken together, these analyses demonstrate

that the negative lobe of the linear filters is necessary to faithfully

reproduce AMMC/VLP responses.

By contrast, adaptation parameters were as variable across as

within cell types (Figure S4D). The majority of cells had only one

or two timescales of adaptation, with the most frequent domi-

nant timescale being 2 s (Figures S4E–S4G). This long time con-

stant suggests that adaptation is active during the coding of

song bout structure (see Figure 1B for relevant timescales).

The nonlinearities in the aLN model were uniform and nearly

linear across cell type, likely because these cells lack spiking

nonlinearities (Kato et al., 2014) (Figure 3J). Thus, the aLN

encoder model (1) suggests relative homogeneity for song en-

coding across a morphologically diverse subset of AMMC/VLP
1338 Neuron 87, 1332–1343, September 23, 2015 ª2015 Elsevier Inc
neurons, (2) reveals two relatively simple computations of all re-

corded AMMC/VLP neurons (biphasic filtering and adaptation)

and (3) effectively predicts single-trial responses to courtship

song stimuli.

Readouts of AMMC/VLP Neurons Exceed Behavioral
Tuning for Song Amount
We next sought to relate the neural representation of song in

AMMC/VLC neurons to female slowing. To do this, we used

the aLN (encoder) model to predict neural responses (for each

of the 32 recorded neurons) to each of the �4,000 min of court-

ship song stimuli from our behavioral dataset. This produced

a total of 127,552 model responses. We then built a decoder

model to predict recorded female speed from each individual

neuron’s response (Figure 4A). The decoder integrated neural

responses over time windows of one minute; it thereby linked

computations on the order of hundreds of milliseconds to
.



behavioral timescales of tens of seconds. The decoder model

serves two goals: (i) to reveal the computations within AMMC/

VLP neurons that underlie female sensitivity for bout structure

and (ii) to suggest computations downstream of AMMC/VLP

neurons that generate female responses to song.

To incorporate nonlinearities commonly found in neurons, our

decoder model started with a sigmoidal nonlinearity, which

imposed both a threshold and a saturation on the model neuron

response (Figure 4A). Threshold and saturation values in our

model were chosen independently for each cell to optimize the

match between that cell’s readout and female speed. Applying

the nonlinearity produced a ‘‘transformed neural response,’’

which when integrated created a predicted female speed that

could be compared with the recorded female speed (Figure 4B;

compare with Figure 1D). Including the sigmoidal nonlinearity

improved correlationswith female behavior in all cells (Figure 4C),

which suggests that simply integrating the raw predicted AMMC/

VLP responses is not sufficient to explain female behavior.

Notably, all cells outperformed the correlation between song

amount and female speed when decoded this way (Figure 4C;

all points are above the horizontal dashed line, which is the

rank correlation between song amount and female speed; Fig-

ure 1D), implying that the decoder relies on song features other

than just the amount of song.

We next removed from the encoding models either adaptation

(generating LN models) or the linear filter (generating aNmodels)

(Figure 4D). Removing the filter, but not adaptation, strongly

reduced performance. Removing both filtering and adaptation,

thereby predicting female speed from the raw song traces,

further reduced performance (r = 0.14). Furthermore, the ampli-

fication of the negative response components by the sigmoidal

nonlinearity in the decoder (Figure 4A, blue) suggests that the

negative lobe of the biphasic filter plays a major role in creating

sensitivity to behaviorally relevant features of song. This amplifi-

cation was not specific to any cell type (Figures S6A–S6D).

Removing the negative lobe of the linear filter (setting all negative

weights to zero; ‘‘aL+N’’ models) reduced decoder performance

as strongly as removing the filter altogether (Figure 4D). Thus, the

decoder model predicts female speed and identifies biphasic

filtering as essential for reproducing behavioral selectivity.

A Modified Decoder Model Matches Behavioral Tuning
for Bout Duration
We next identified the song features (Figure 1G) most strongly

correlated with the decoder output. Our decoder model inte-

grates both positive (Figure 5A, orange) and negative (Figure 5A,

blue) response components over 1 min of courtship (thus, over

several song bouts). The positive response component consti-

tutes a faithful, binary representation of bout structure without

discriminating between pulse and sine; it is thus highly correlated

with the duration of each individual bout (Figure 5B, orange), and

the integral of the positive response over 1 min correlates best

with the amount of song (Figure 5C). By contrast, the negative

offset response is largely invariant to each individual bout’s dura-

tion (Figure 5B, blue), and its integral over 1 min correlates best

with the number of bout onsets (Figure 5D). Thus, the positive

and negative response components generated by the biphasic

filters in AMMC/VLP neurons (Figure 3) represent two distinct
Neu
and behaviorally relevant song features (song amount and bout

number) in a multiplexed code within the Vm of single neurons

(see Discussion).

Our behavioral analysis identified bout duration as the best

predictor of female speed: how does the female brain extract

this information? Because the decoder integrates over positive

and negative response components, it relies on the difference

of song amount and bout number for predicting female speed.

However, bout duration is the ratio—not the difference—of

song amount and bout number, and it can therefore be explicitly

decoded by instead dividing the integrated positive and negative

response components of AMMC/VLP neurons within the

decoder (Figure 5E). The readout from this modified decoder

more strongly correlates with bout duration (compare Figures

5F and 5G, p = 3e-8, one-sided sign test) and better predicts fe-

male speed (Figure 5H); it reads out responses of single neurons

with a near perfect match to the behavioral correlation between

bout duration and female speed (Figure 5I). The nonlinearity in

the new ratio-based decoder is not strictly necessary to predict

behavior (Figure S6E). By contrast, in the original difference-

based decoder, the nonlinearity played a major role (Figure 4C);

there, the weight of song amount and bout number was adjusted

by compression and amplification, respectively. We thus pro-

pose a simple algorithm that can extract bout duration based

on a few operations: biphasic filtering in AMMC/VLP neurons

and rectification, integration, and division in downstream neu-

rons. Our approach links female selectivity for a particular prop-

erty of male courtship song (song bout duration) and the neural

representation of song in the female brain in a physiologically

plausible way.

DISCUSSION

In this study, we used computational models to link natural stim-

ulus features, neural codes, and animal behavior. This approach

enabled us to (i) identify behaviorally relevant song features dur-

ing natural behavior (Figure 1), (ii) characterize the computations

that underlie the representation of sounds in early auditory neu-

rons (Figures 2 and 3), (iii) link these computations to female

behavior (Figure 4), and (iv) propose a simple algorithm for gener-

ating behavioral selectivity for song features on long timescales

(Figure 5). Similar approaches have been successfully applied in

other systems (e.g., to link olfactory discrimination behavior with

neural codes in Drosophila) (Parnas et al., 2013) or to study the

emergence of object recognition in themammalian visual system

(DiCarlo et al., 2012). Our study extends this approach to a social

behavior like courtship.

Female Sensitivity to Song Structure on Long
Timescales
Drosophilamelanogaster courtship song contains features span-

ning multiple timescales. Short timescale features like the IPI

vary across species, and previous studies have focused on the

IPI in relation to female receptivity (Bennet-Clark and Ewing,

1969; von Schilcher, 1976). When examining timescales of inte-

gration >2 s, we failed to uncover a strong effect of conspecific

IPI range on female speed. Instead, we found that females are

most sensitive to long timescale song features like bout duration.
ron 87, 1332–1343, September 23, 2015 ª2015 Elsevier Inc. 1339
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Figure 5. Modified Decoder Model Predicts Female Responses to

Bout Duration

(A) Separation of the transformed neural response (Figure 4A) into positive

(orange) and negative (blue) response components by half-wave rectification

at base line. Trace is from the same neuron in Figure 4A.

(B) Correlation between bout duration and positive (r = 0.99, p = 0) or negative

(r = 0.20, p = 0.49) response components.

(C) Absolute rank correlation between positive response components (aver-

aged over one minute, not for each individual bout as in [B]) and song features

for all cells. The rank correlation with song bout amount is highest (all p < 2 3

10�8, one-sided sign test).

(D) Same as (C), but for negative response components. The rank correlation

with bout onsets is highest (all p < 1 3 10�6, one-sided sign test).
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Our previous study showed that melanogaster females slow

down in response to conspecific but not heterospecific male

song; themajor difference between these songs is on short time-

scales (e.g., IPIs), as males of both species shape song bout

structure in accordance with the female’s behavior (Coen

et al., 2014). Taken together, our results are most consistent

with the interpretation that short timescale song features indicate

species identity, whereas long timescale features (like bout dura-

tion) indicate fitness (signaling, for example, a male’s ability

to follow the female) and are used to differentiate between con-

specifics. In this context, it is worth noting that pheromonal

incompatibilities between species typically prevent courtship

between heterospecifics (Billeter et al., 2009; Fan et al., 2013).

The influence of longer timescale song structure on female

speed is non-trivial, as indicated by three aspects of our behav-

ioral data. First, bout duration was the strongest predictor of all

single or pairs of song features (Figure 1G and Figure S1C). Sec-

ond, the duration of bouts, but not the pauses between bouts,

was strongly correlated with female speed (Figure S1B). This is

contrary to the expectation if the selectivity for bout duration

were a trivial consequence of its correlation with song amount,

since pause duration negatively correlates with song amount.

Third, females reduce speed most to song with few bout onsets

but many sine onsets, while pulse onsets were uncorrelated with

her speed. This pattern cannot be explained by correlations be-

tween these features and song amount. All three points indicate

that females are not simply accumulating conspecific song but

instead are evaluating song bout structure on timescales

exceeding that of the IPI. This has implications not only for the

neural computations underlying song processing (discussed

below) but also for evolution and sexual selection theories.

AMMC/VLP Neurons and the Representation
of Courtship Song
To characterize the representation of song in the early auditory

centers of the Drosophila brain, we recorded from as many
(E) Alternative decoder based on reading out positive and negative response

components separately and then combining via subtraction (equivalent to the

original decoder, Figure 3A) or division (ratio-based decoder).

(F) Same as (C), but for the original decoder (Figure 4A). There is no single

feature that correlates most strongly with this decoder readout. However,

the output of this decoder has a strong correlation with bout duration

(r = 0.89(0.13), median(IQR)).

(G) Same as (C), but for the ratio-based decoder. Its output correlates most

strongly with bout duration (r = 0.93(0.04), all p < 1 3 10�3, one-sided sign

test).

(H) The ratio-based decoder outperforms the original subtraction-based

decoder for all cells and reaches the correlation values achieved between

the female behavior and bout duration (original decoder: r = 0.38(0.04), ratio

decoder: rank r = 0.42(0.02), p = 3 3 10�8, sign test).

(I) Comparison of female speed preference function for bout duration from

behavioral data (black, reproduced from Figure 1H) and from the ratio decoder

for one AV1 cell (purple); rank correlations are the same (p < 1 3 10�13).

n = 32 cells for (C) and n = 26 cells for (D), (F), and (G), since 6/32 cells did not

exhibit a detectable negative response component. All tuning curves and

correlation values based on 3,896 1-min segments of song. All p values in (C),

(D), (F), and (G) are Bonferroni corrected for 55 comparisons between all song

features.

See also Figure S6.
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different types of AMMC/VLP neurons as possible, and we

sampled both local and projection neurons. To our surprise,

response properties quantified through the aLN model (Figure 3)

revealed little qualitative difference between cell types. All neu-

rons exhibited long linear filters and showed pronounced adap-

tation during responses to pulse trains, and most produced

negative offset responses. The major quantitative difference

among AMMC/VLP neurons was the duration of the positive filter

lobes (Figure 3H); however, this feature did not impact behavioral

predictions (rank correlation between duration of the positive

lobe and decoder performance r = �0.01, p = 0.96). The range

of filter durations may thus serve other aspects of song process-

ing or other acoustically driven behaviors (Lehnert et al., 2013;

Vaughan et al., 2014). The relative homogeneity in response

properties in our dataset also makes it unlikely that females

rely on any single neuron typewhen processingmale song. How-

ever, a recent study focused on two AMMC neuron types not

sampled in our study (one cluster of AMMC local neurons

[aLN(al)] and another cluster of AMMC projection neurons [B1

or aPN1]; both cannot be recorded from while keeping the

antenna intact and motile in air). They found that neural silencing

of either cluster in females lengthened the time to copulation

(Vaughan et al., 2014). Whether these neuron types are also

necessary for female slowing in response to courtship song

was not determined. Additionally, we do not know how the

auditory responses of these two neuron types differ from the

AMMC/VLP neurons we sampled. Imaging neural responses

using fast voltage sensors (Cao et al., 2013) should facilitate

mapping the auditory codes of the full complement of neurons

in the AMMC/VLP.

Linking Computations in the Auditory Pathway with
Female Behavior
Of the two main computations in our aLN encoder model

(biphasic filtering and adaptation), only biphasic filtering influ-

enced the full model’s (encoder + decoder) ability to predict

female behavior. In principle, adaptation should contribute to

tuning for song features given that it acts on long—and behavior-

ally relevant—timescales and is known to affect temporal coding

(Benda and Herz, 2003). We posit that in Drosophila AMMC/VLP

neurons, adaptation may mainly serve as a gain control mecha-

nism to preserve auditory sensitivity and conserve energy across

the large range of intensities likely encountered by the female

during courtship. The decoder model also revealed an important

role for the weak, long negative lobe of the biphasic filter, which

produces negative offset responses after the end of song bouts

in 81% of the neurons recorded. This negative response is inde-

pendent of bout duration and thus forms the basis for counting

the number of bouts through integration. Since the decoder inte-

grates over long time windows, as the female does in evaluating

male song, the negative lobe of the filter leads to a signal that

is clearly different from noise and hence can be used by the

decoder. Note that in a noiseless system, the amplification of

the weak negative response components is not strictly neces-

sary to match behavior (Figure S6E). However, amplification

ensures robustness to noise; it is therefore desirable to place it

as early as possible in the neural pathway, as occurs in our

decoder (Figure 5E). The negative lobe’s biophysical basis may
Neu
be slow inhibition or activation of hyperpolarizing currents after

depolarization (e.g., Ca2+-dependent K+ channels underlying

AHPs).

Similar biphasic filters have been found in numerous other sys-

tems (Hart and Alon, 2013; Kato et al., 2014; Nagel and Doupe,

2006): there they are proposed to support efficient coding (Atick

and Redlich, 1990; Zhao and Zhaoping, 2011). Here, we add

another aspect that makes biphasic filters advantageous: the

two lobes correspond to two neuronal response features (tonic

and phasic) and signal distinct song features (song amount

and bout number). This representation thus constitutes a multi-

plexed code in which multiple features are encoded in different

aspects of a single data stream (Blumhagen et al., 2011; Ratté

et al., 2013). Since the tonic and phasic components occur

sequentially, they can be easily de-multiplexed using rectifica-

tion, an essential component of the decoder model (Figure 5).

The decoder further provides evidence that females evaluate

bout duration, independent of our behavioral analysis, because

we only considered the neuronal response patterns and female

speed values (not song parameters) when optimizing the

original (non-ratio-based) decoder’s sigmoidal nonlinearity.

Nonetheless, its output was strongly correlated with bout dura-

tion (r = 0.89).

Given that our knowledge of higher-order auditory neurons in

the Drosophila brain is limited (Lai et al., 2012; Zhou et al., 2014),

the utility of our decoder model is that it posits simple algorithms

for transforming the auditory codes of AMMC/VLP neurons into

behavioral responses to courtship song. We propose that an

AMMC/VLP neuron is read out by two downstream neurons.

One of these neurons positively rectifies the AMMC/VLP

response and encodes bout structure in a binary way. Alterna-

tively, this neuron could get its input from one of the AMMC/

VLP neurons in our dataset that lacked a sufficiently strong

negative lobe (Figure 3I). The other downstream neuron reads

out the phasic response components at the end of each bout.

This could be implemented through release from inhibition

(cf. Liu et al., 2015). To improve the signal-to-noise ratio, these

phasic responses could be amplified by voltage-dependent

conductances (Engel and Jonas, 2005; González-Burgos and

Barrionuevo, 2001). The output of these two downstream neu-

rons would then be integrated, for example, through recurrent

connectivity, intracellular molecules like calcium, or extracellular

molecules like neuropeptides (Durstewitz et al., 2000; Flavell

et al., 2013; Major and Tank, 2004). Finally, the two integrated

values are combined by divisive inhibition to yield an output

that is used to control female speed (Gabbiani et al., 2002; Silver,

2010).

Our decoder model, like female behavior, computes average

bout duration, not the duration of single song bouts, suggesting

that individual Drosophila neurons do not encode bout duration

explicitly. This contrasts with other systems, where duration-

tuned neurons have been found (Aubie et al., 2012). In the

case of processing echolocation signals or speech, knowing

the duration of individual calls is likely essential. However, for

the female fruit fly, the duration of an individual bout may carry

little information about male fitness. This highlights a general

property of the integration processes associated with decision-

making or behavioral control (Brunton et al., 2013; Clemens
ron 87, 1332–1343, September 23, 2015 ª2015 Elsevier Inc. 1341



et al., 2014; DasGupta et al., 2014): some features of the sensory

environment may be available to the animal only in the form of

averages or summary statistics (Clemens and Ronacher, 2013;

McDermott and Simoncelli, 2011; Freeman and Simoncelli,

2011). This has consequences for the search for neural corre-

lates of behavior, in that explicit neuronal selectivity for behavior-

ally relevant features may never arise until after decision-making

stages.

EXPERIMENTAL PROCEDURES

Flies

Details regarding all fly stocks and genotypes can be found in the Supple-

mental Experimental Procedures.

Behavioral Analysis

We used a previously published dataset of natural courtship song and accom-

panying male and female movements from pairs of wild-type males (of eight

geographically diverse strains) and PIBL females (Coen et al., 2014). Defini-

tions of song features and details of all analyses can be found in the Supple-

mental Experimental Procedures.

Sound Delivery and Electrophysiology

Patch-clamp recordings were performed and auditory stimuli were delivered

as described previously in Tootoonian et al. (2012). We recorded from 15

different cell types with projections in the AMMC/VLP (see Table 1). For details,

see the Supplemental Experimental Procedures.

Analysis and Modeling of Electrophysiological Data

Tuning curves for frequency, intensity, and IPI were constructed from the

baseline subtracted Vm. The Vm response was predicted using an adaptive

linear-nonlinear (aLN) model, in which the stimulus envelope was pre-pro-

cessed by a divisive adaptation stage before being filtered and nonlinearly

transformed to the predicted Vm. See the Supplemental Experimental Proce-

dures for details on analyses, model parameters, and fitting procedures.

Behavioral Model

For predicting the female behavioral response to song, we used aLN models

fitted to the electrophysiological data. We generated model neural responses

for the courtship song recorded in the behavioral assay. We then predicted

female speed using a decoder, which consisted of a sigmoidal nonlinearity

and an integration stage. See the Supplemental Experimental Procedures

for details on the decoder model and variants tested.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, five movies, and Supplemental

Experimental Procedures and can be found with this article online at http://dx.

doi.org/10.1016/j.neuron.2015.08.014.
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