
Neuron 51, 359–368, August 3, 2006 ª2006 Elsevier Inc. DOI 10.1016/j.neuron.2006.06.030
Reduction of Information Redundancy
in the Ascending Auditory Pathway
Gal Chechik,1,5,* Michael J. Anderson,4

Omer Bar-Yosef,2 Eric D. Young,4 Naftali Tishby,1,3

and Israel Nelken1,2

1 Interdisciplinary Center for Neural Computation
2Department of Neurobiology
3School of Computer Science and Engineering
Hebrew University of Jerusalem
Jerusalem 91904
Israel
4Department of Biomedical Engineering
Johns Hopkins University
Baltimore, Maryland 21205

Summary

Information processing by a sensory system is re-

flected in the changes in stimulus representation along
its successive processing stages. We measured infor-

mation content and stimulus-induced redundancy in
the neural responses to a set of natural sounds in three

successive stations of the auditory pathway—inferior
colliculus (IC), auditory thalamus (MGB), and primary

auditory cortex (A1). Information about stimulus iden-
tity was somewhat reduced in single A1 and MGB neu-

rons relative to single IC neurons, when information
is measured using spike counts, latency, or temporal

spiking patterns. However, most of this difference
was due to differences in firing rates. On the other

hand, IC neurons were substantially more redundant
than A1 and MGB neurons. IC redundancy was largely

related to frequency selectivity. Redundancy reduction
may be a generic organization principle of neural

systems, allowing for easier readout of the identity of
complex stimuli in A1 relative to IC.

Introduction

Over the last 40 years, various general principles of in-
formation processing in sensory systems have been
suggested based on theoretical considerations. These
include effective information transmission (Becker and
Hinton, 1992; Linsker, 1988), efficient use of storage
(Barlow, 1961; Miller, 1956) or energy resources (Levy
and Baxter, 1996, 2002), achieving sparse codes (Ol-
shausen and Field, 1996), and extraction of behaviorally
relevant stimulus properties (Escabi et al., 2003; Fritz
et al., 2003; Rieke et al., 1995). Each of these proposed
principles predicts specific transformations of stimulus
representations along the processing hierarchy, but
the experimental evidence required to assess any of
them is still very limited.

Among the potential changes in stimulus representa-
tions, of special interest is the way groups of neurons in-
teract to code information about the stimuli. These inter-
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actions can be synergistic, in which the interactions
increase the amount of information carried by the group
compared with the same neurons considered indepen-
dently of each other. The interactions can also be redun-
dant, in which they reduce the amount of information
carried by isolated neurons independently because dif-
ferent neurons convey overlapping information. At the
receptor level, neurons are often highly redundant since
each point in the sensory epithelium is represented by
a large number of neurons with overlapping receptive
fields. Barlow (1961) advocated the idea that redun-
dancies in stimulus representation are reduced as the
stimuli are successively processed at different stations.
As a result, neurons at higher processing stations may
become largely independent to allow for easier readout
and more efficient use of coding resources. This idea,
together with other theoretical principles, can be inves-
tigated experimentally by comparing stimulus represen-
tations along a hierarchy of processing stations.

To investigate how the stimulus representation
changes along processing stations, it is necessary to
use stimuli that potentially engage nontrivial processing
mechanisms at all levels of the auditory pathway. This
requirement poses opposing constraints on the stimuli:
on the one hand, the stimuli have to be rich enough to
activate interesting central processing mechanisms,
and on the other hand, their peripheral representations
must be similar enough to make the task of distinguish-
ing between them nontrivial. To satisfy these two re-
quirements, we designed a set of stimuli that was based
on natural bird vocalizations that contain rich and com-
plex acoustic structures. To these we added systemati-
cally modified variants that shared similar spectro-tem-
poral structures (Figure 1). These are expected to elicit
high redundancies in the auditory periphery, although
they are clearly different perceptually. Furthermore, we
have previously demonstrated that these stimuli evoke
rich and complex responses in auditory cortex
(Bar-Yosef et al., 2002). These stimuli are therefore suit-
able to test the fate of stimulus-induced redundancy in
the ascending auditory system.

To quantify changes in stimulus representations, we
used measures of information content (Borst and Theu-
nissen, 1999; Rieke et al., 1997) and stimulus-induced
informational redundancy of neural responses in three
subsequent stations in the core auditory pathway: the
inferior colliculus (IC), medial geniculate body of the
thalamus (MGB), and primary auditory cortex (A1).

Results

All recordings were performed in halothane-anesthe-
tized cats using a single set of stimuli consisting of nat-
ural and modified bird vocalizations (Bar-Yosef et al.,
2002). Figure 2 shows examples of three representative
stimuli, together with the neuronal responses they eli-
cited in cells from different brain areas. The A1 neurons
(Figures 2F and 2G) often responded differently to the
full sound (left column) and to the main chirp component
of the sound (center column), in which the echoes and
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background noise were removed. Responses to the full
natural sound and to the background noise and echoes
(right column) were often similar (Figures 2F and 2G),
even though the echoes were 15–20 dB weaker than
the main chirp and had different temporal envelopes.
In contrast, IC neurons (Figures 2B and 2C) responded
similarly to the full sound and to the main chirp, but re-
sponded weakly to the noise. MGB neurons were inter-
mediate (Figures 2D and 2E). In this study we quantify
these complex response properties using information
theoretic measures.

Information about Stimulus Identity

The relations between neural responses and the identity
of the stimulus are often of a complex nature: they typi-
cally involve complex and stochastic patterns of activity
that are not well characterized by linear correlations
alone. High-order correlations between neural activity
and stimuli can be quantitatively evaluated using the
mutual information (MI) I(S;R) (Cover and Thomas,
1991; Shannon, 1948) between the stimuli S and the re-
sponses R (see the Experimental Procedures and the
Supplemental Data). The MI is a function of the joint dis-
tribution of stimuli and responses that has several alter-
native interpretations. First, the MI can be interpreted as
quantifying the differences between the responses to
different stimuli (‘‘stimulus effect’’). Whereas a stimulus
effect is usually quantified by simple measures such as
changes in average spike rate, the MI measure is sensi-
tive to additional changes in the distribution of the re-
sponses. For instance, two stimuli that give rise to the
same average spike counts but with different standard
deviations yield a nonzero MI. Furthermore, the MI is
free of any assumption on the shape of the distribution
of the responses to each stimulus, such as normality
or equal variance, and can be used to quantify depen-

Figure 1. Spectrograms of the Stimuli Used in this Study

Five variants (rows) were created out of three different bird chirps

(columns). The variants were Natural: the full sound; Main: main

chirp component after removing echoes and background noise;

Noise: sound after removing the main chirp; Echo: the echo parts

of the noise; Back: the background remaining after removing the

echo from Noise.
dence between categorical variables such as stimuli
and spike patterns, where measures such as averages
cannot be meaningfully computed. On the downside,
the MI is substantially more difficult to estimate reliably.
An alternative interpretation of MI, rooted in information
theory, sees MI as the average reduction in the uncer-
tainty about the stimulus after observing a single re-
sponse (Cover and Thomas, 1991; Shannon, 1948).

In practice, since the responses R are complex and
high-dimensional in nature, they are usually quantified
using simplified representations of the spike trains.
Common representations are the spike counts during
the stimulus, the first spike latency, or the set of spike
patterns coded as binary words at a given resolution
(e.g., 4 ms bins). Choosing how spike trains are repre-
sented typically has a large effect on the level of informa-
tion that can be extracted from the spike train. More
complex representations (such as binary spike patterns)
can extract more information from the responses, but it
is not clear to what extent this information is used by

Figure 2. Samples of Stimuli and Neural Responses

(A) Three typical stimuli: A bird chirp in its full natural form (left), the

main chirp component after removing the echoes and the back-

ground noise (center), and the echoes and background (right) ([B]–

[G]). Responses in different brain regions are displayed as dot ras-

ters. In the right column, frequency response areas with the stimulus

spectra superimposed (white lines) are displayed. The frequency re-

sponse areas show discharge rate (from blue [low] to red [high]) in

response to tones of various frequencies (kHz, abscissa) and sound

levels (dB SPL, ordinate). (B and C) Two IC cells (best frequencies

are 8.8 and 10.6 kHz). Stimulus spectra were shifted into the neuro-

nal response areas in (B) and (C) by increasing the sampling rate by

2.4 and 5.3, respectively. (D and E) Two MGB cells (both best fre-

quencies are 5.9 kHz). ([F]–[H]) Three A1 cells (best frequencies are

3.6 and 5.9 kHz). In (D)–(H), the original sampling rates were used.
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Figure 3. Information in the Coding of Stimulus Identity

([A]–[D]) Illustration of matrix-based estimation of MI between stimuli identity and spike counts for a single MGB cell. (A) Five illustrative stimuli.

(B) Raster plots of the responses to 20 repeats of each of the stimuli in (A). (C) Histogram of the spike count distribution across trials presented in (B).

(D) Color-coded histograms of spike counts for all the 15 stimuli (rows). The naive MI estimator is the MI over this empirical joint distribution matrix.

(E) Color-coded histogram of spike patterns’ occurrence for all 15 stimuli. For the purpose of this illustration, spikes in a window of 64 ms were con-

sidered, and their response times were discretized into 8 ms bins, yielding 8 bins, each containing no spikes (0) or at least one spike (1).

([F]–[H]) Mutual information and firing rates. Each point shows the average firing rate of a neuron to the stimulus ensemble (ordinate) plotted against

the MI between spike counts and stimulus identity (abscissa). Large symbols denote the mean over a brain region. (F) MI using counts. (G) MI using

latencies. (H) MI using spike patterns.
downstream neurons, whose readout mechanism may
be limited. To address this issue we analyzed several re-
sponse representations, each taking into account some
different aspects of the responses (Nelken et al., 2005),
and we report results obtained with several response
representations.

We used the MI as a tool to quantify how the represen-
tation of the above set of stimuli changes between IC,
MGB, and A1. We started by estimating the levels of in-
formation about stimulus identity that are conveyed by
single neurons. Figures 3A–3D illustrate how MI is esti-
mated from spike counts: the responses (Figure 3B)
for each stimulus (Figure 3A) are summarized using the
spike count, and the distribution of the counts is calcu-
lated for each stimulus (Figure 3C). The empirical joint
distribution of stimuli and counts (Figure 3D) can be
used to estimate the MI (see the Experimental Proce-
dures). Similarly, the responses can be represented us-
ing other statistics like temporal firing patterns. The cor-
responding MI values can be calculated based on the
distribution of these patterns and the stimuli (Figure 3E).

On average, we found that individual IC neurons con-
veyed 2- to 4-fold more information about the identity of
the stimuli than did A1 and MGB neurons. This was
observed both for the information conveyed by spike
counts (IC: 0.68 bits/trial, n = 39; MGB: 0.16 bits/trial,
n = 36; A1: 0.18 bits/trial, n = 45), spike latency (0.75,
0.36, 0.39 bits/trial in IC, MGB, and A1, respectively),
and spike patterns (0.88, 0.38, 0.41 bits/trial; see the
Supplemental Data for more details). The MI estimated
by spike counts was strongly correlated with MI esti-
mates using latency or spike patterns. The ratios of the
firing rates over all stimuli had about the same magni-
tudes, and as a result, information per spike was rather
similar in the three stations (mean MI per spike [6 stan-
dard deviation] was 0.38 6 0.26, 0.44 6 0.28, and 0.28 6
0.18 bits/spike using spike patterns in IC, MGB, and A1,
respectively; see Figures 3F–3H and the Supplemental
Data). These differences show that stimuli typically eli-
cited responses that were more easily differentiated in
IC neurons than in A1 neurons. However, most of this
difference could be accounted for by the higher firing
rate of IC neurons, which made individual responses
overall more discriminable. The 2-fold reduction in sin-
gle-neuron information that we observed between IC
and A1 is counterbalanced by the substantially larger
number of neurons in A1. Thus, if such differences in
information levels are indeed typical for general sets of
natural stimuli, they are not expected to affect the total
representational capacity of A1 relative to the IC.

To better understand the meaning of the absolute MI
values reported here, we consider the MI as a reduction
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in uncertainty. The total uncertainty of the stimulus
ensemble, as quantified by the stimulus entropy, is
log2 (15) = 3.91 bits. Since the average A1 neuron carried
0.41 bits/trial, about ten independent A1 neurons would
be enough to eliminate stimulus uncertainty. In other
words, if information was additive across neurons,
the identity of the stimulus could have been completely
specified, on a trial-by-trial basis, using ten neurons only
(and a correspondingly smaller number of IC neurons).
Thus, the seemingly low information values computed
here nevertheless imply that surprisingly small popu-
lations of neurons could be enough to discriminate
between the stimuli used in this study.

Informational Redundancy
The above calculation estimates information carried by
single neurons, but the information carried by a popula-
tion of neurons could also depend on the relationships
between the responses of different neurons (Pouget
et al., 2003, Schneidman et al., 2003). It is customary
to separate these relationships into two types. Signal
correlations are due to a similarity in the neuronal re-
sponses across different stimuli. These occur, for exam-
ple, when several neurons have the same response pro-
file (mean spike counts as a function of stimulus identity)
over the stimulus ensemble. Noise correlations are due
to common fluctuations in the responses to a given stim-
ulus across repeated presentations. For example, when
a stronger-than-average response of one neuron at
a certain trial tends to occur with a stronger-than-aver-
age response of the other neuron in the same trial, their
correlation is referred to as a noise correlation. As a rule,
signal correlations always lead to redundancy, whereas
noise correlations may lead either to redundancy or to
its opposite, synergy.

Before we discuss how signal and noise correlations
can be quantified, we demonstrate the effect of signal
correlations using spike-counts response profiles. We
focus on signal correlations and assume for the moment
that the noise correlations are negligible (this assump-
tion will be experimentally verified below). Examples of
response profiles are displayed for one pair of A1 neu-
rons (Figure 4A) and one pair of IC neurons (Figure 4B).
Whereas the responses of the IC neurons in this exam-
ple exhibited covariation across the stimulus set, the
A1 neurons did so to a much lesser extent. The same
data can be studied from the view of the readout of spike
responses. In this setting, the observed responses are
used to infer which stimulus was presented. It is reason-
able to assume that in this case, observing a response of
the second IC neuron does not add much to the informa-
tion supplied by the first, testifying that these two neu-
rons provide redundant information. In contrast, observ-
ing the second A1 neuron may help proportionately
more in identifying the stimulus. It will be shown below
that this contrast between IC and A1 neuronal pairs is
common, although we used a different way to quantify
this difference.

The natural tools to study synergy and redundancy in
these terms are again information theoretic. Figures 4C
and 4D show the joint distribution of the spike counts
for the two pairs of neurons. The joint distribution of
the IC pair (Figure 4D) shows a clear interdependence
between the two neurons: large spike counts in one neu-
ron tend to occur with large spike counts in the other
neuron. In the A1 pair (Figure 4C), this dependence is
much weaker if present at all. Thus, the dependence be-
tween the responses of the two neurons is another way
of uncovering redundancies. In contrast with the mean-
count response profiles, which are based on average
spike counts and require ad hoc measures in order to
quantify the redundancy, the degree of dependence in
the joint distribution of the responses can be measured
by the MI without any distributional assumptions. In ad-
dition, MI is not limited to spike counts, and we can cal-
culate the distribution of other statistics of the re-
sponses, like the joint distribution of stimuli and spike
patterns or latency as shown above.

Most importantly, rather than investigating similarity
in neuronal responses, we focus on informational redun-
dancy, which quantifies the similarities between the sets
of stimuli that can be discriminated using neuronal re-
sponses. To clarify the difference, consider the following
example. A phasic neuron codes the identity of the stim-
ulus in the timing of its burst. Another, tonic neuron co-
des the identity of the stimulus in its overall spike count.
The pair of neurons can be redundant if the timing of the
phasic response is highly correlated with the number of
spikes elicited in the tonic neuron by the same stimulus.
In such a case, although each neuron has a very different
response pattern and requires a different decoding
method, the information they convey about the stimuli
is similar. Therefore, nonredundancy is inherently differ-
ent from ‘‘distinct tuning curves.’’ To address such po-
tential heterogeneity in coding, we quantified redun-
dancy conveyed through various aspects of spike
trains: spike counts, latency, and spike patterns. Spike
patterns are actually sensitive to both latency and total
spike counts.

Figure 4. Joint Distributions of Spike Counts

(A and B) Spike counts across the stimulus ensemble for a pair of IC

cells (best frequencies 5.5 and 6.1 kHz) and a pair of A1 cells (both

best frequencies are 5.1 kHz). Error bars = SEMs of the spike counts,

for 20 repeats of the ensemble for A1 neurons and ten repeats for IC

neurons. The sampling rate of the stimuli for the IC neurons was in-

creased to place the center frequency of the chirp at BF.

(C and D) Joint distribution of spike counts across all repeats of all

stimuli, of the same two pairs of IC and A1 neurons.
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We quantified the signal correlations by the mutual
information between responses of different neurons,
I(X1; X2), using joint distributions as in Figures 4C and
4D. Noise correlations can be quantified by the stimu-
lus-conditioned information I X1; X2jSÞð in which the MI
is first estimated using the joint distribution of the re-
sponses for each stimulus separately, then averaged
across stimuli. Estimating noise correlations requires
more stimulus repetitions because the joint distributions
of the responses are estimated from substantially
smaller numbers of trials. In order to have a reliable es-
timate of the noise correlations, we measured the re-
sponses of a subset of neurons in A1 with 100 repeti-
tions per stimulus. Noise correlations in these data
were negligible (see Figure S1 in the Supplemental
Data). Noise correlations are believed to be mostly due
to network interactions, and are therefore expected to
be more pronounced in higher processing stations.
Since these correlations were negligible in A1, we con-
clude that they are of minor importance in MGB and
a fortiori also in IC. Thus, in the data discussed here, sig-
nal correlations seem to be dominant, leading to a possi-
ble predominance of information redundancy between
neurons. This result allowed us to approximate the
response distributions of several neurons as being con-
ditionally independent given the stimulus (see Experi-
mental Procedures). The stimulus-conditioned indepen-
dence approximation has been used previously (Reich
et al., 2001) when the within-stimulus correlations be-
tween simultaneously-recorded neurons are small, as
they are here (Figure S1). This approximation has several
considerable practical advantages: it allows us to use
nonsimultaneously measured pairs of neurons and to
couple them as if noise correlations were absent. It also
provides a more reliable redundancy estimation, and
therefore allows using fewer stimulus repeats or estimat-
ing higher-order redundancies.

To quantify the redundancy among larger groups of
neurons caused by between-stimuli covariation, we
used the measure of multi-information, a natural exten-
sion of mutual information, defined as

IðX1; .; XnÞ=
X

x1 ;.;xn

pðx1;.; xnÞlog

�
pðx1;.; xnÞ

pðx1Þ$.$pðxnÞ

�

(Studenty and Vejnarova, 1998). Redundancy was then
defined as the normalized multi-information

IðX1; .; XnÞ=
X

i

IðXi; SÞ

where all joint distributions were approximated under
the stimulus-conditioned independence approximation.
Normalization was performed as in Brenner et al. (2000)
and Reich et al. (2001) and is required in order to bring
measures from different auditory stations to a unified
scale (see the Experimental Procedures). Using un-
normalized measures yields considerably more pro-
nounced effects, which are shown in Figure S2.

We first discuss redundancy when the neural re-
sponse is summarized using the total spike counts,
and we then discuss extensions to more complex mea-
sures of the responses further below. Neurons in A1 and
MGB were found to be significantly less redundant than
neurons in IC in the way they code the stimulus identity
(Figure 5A). The median normalized redundancy in IC
was 0.13 (with a median absolute deviation from the me-
dian of 0.07), whereas in MGB it was 0.02 (60.015) and in
A1 0.03 (60.015) (t test, p < 10210 for both IC-MGB and
IC-A1 comparisons, not significant for A1-MGB compar-
ison, p > 0.8). This phenomenon is even more pro-
nounced when considering triplets of neurons (Fig-
ure 5B), where median-normalized redundancies were
0.34, 0.03, and 0.05 in IC, MGB, and A1, respectively.
These results suggest that information processing in
the auditory pathway operates to achieve a neural repre-
sentation in which neurons are tuned for independent
stimulus properties.

The size of the redundancy could be strongly affected
by how responses are represented. In particular, decod-
ing spike trains using total spike counts neglects infor-
mation conveyed by the temporal structure of the spike
train. Higher and more accurate estimates of the MI may
be obtained by using other statistics of the spike trains
(de Ruyter van Steveninck et al., 1997; Panzeri et al.,
1999; Victor, 2002, Nelken et al., 2005), since these
may take into account temporal structures and high-
order correlations within spike trains. To test how redun-
dancies depend on spike train representations, we
further estimated MI conveyed by three other statistics
of the spike trains: distribution of spike patterns viewed
as binary words (de Ruyter van Steveninck et al., 1997;
Strong et al., 1998), first spike latency, and binless esti-
mation based on embedding in Euclidean spaces (Vic-
tor, 2002) (see Experimental Procedures and the Sup-
plemental Data). The size of the redundancy remained
essentially the same. For example, Figure 5C displays
the distribution of normalized pair redundancy calcu-
lated using the spike patterns as binary words (as in
de Ruyter van Steveninck et al., 1997; Strong et al.,
1998, Nelken et al., 2005). These show that as in the
case of spike count information, IC neurons are signifi-
cantly more redundant than A1 and MGB neurons.

Controls: Stimulus Bandwidth, Anatomical Location,

and Frequency Selectivity
In V1, redundancy has been shown to decrease when
increasing the size of the visual stimulus (Vinje and
Gallant, 2000, 2002). One possible analog of increasing
the spatial size of a visual image is to increase the band-
width of an auditory stimulus. In order to check the effect
of bandwidth on redundancy reduction, we computed
the redundancies elicited by a subset of stimuli con-
sisting of all the narrowband versions (Main, Echo, and
Main + Echo). These redundancies were also substan-
tially larger in IC than in MGB and A1 (Figure 5D). Similar
results were obtained when using only the remaining
stimuli (data not shown). Thus, the large decrease in
redundancy in MGB and A1 relative to the IC is not
due only to the inclusion of both narrowband and wide-
band stimuli in the stimulus set.

The higher redundancy in IC could result from under-
sampling, because neurons recorded in the same elec-
trode penetrations could share more response proper-
ties and therefore show higher redundancy. Neurons in
IC are known to differ by a number of response proper-
ties, such as temporal response patterns, width of tun-
ing curves, best modulation frequency, and strength of



Neuron
364
Figure 5. Informational Redundancy in the

Coding of Stimulus Identity

(A) Distribution of normalized pairs’ redun-

dancy I(X1; X2)/I(X1; X2; S) based on spike

counts for cells in IC, MGB, and A1. Arrows

denote group means.

(B) Distribution of normalized triplets’ redun-

dancy I(X1; X2; X3)/I(X1; X2; X3; S) based on

spike counts.

(C) Normalized pair redundancy for spike pat-

terns coded as binary words.

(D) Distribution of redundancies as in (A) for

a stimulus set restricted to stimuli having en-

ergy in a narrow frequency range (rows 2–3,

Figure 1).

(E) Average spike count redundancies be-

tween pairs in three different proximity clas-

ses as explained in the text, in the three audi-

tory stations. Error bars denote the SEM of

each group, the number above each bar de-

notes the number of pairs in each group,

and p is the p value for a one-way ANOVA

test for the difference between the groups’

means.
inhibition. At least some of these properties are orga-
nized in dorso-ventral columns (Ehret et al., 2003;
Schreiner and Langner, 1997), which was also the direc-
tion of our electrode penetrations in most experiments.
To address this problem, redundancy was analyzed
separately in three proximity classes: from neurons re-
corded in the same penetration, in the same animal
but in different penetrations, and in different animals
(Figure 5E). MGB and A1 redundancy was found to de-
pend somewhat on proximity class, although rather
weakly (one-way ANOVA, p = 0.03 and p = 0.06, respec-
tively). Redundancy in IC was largely independent of the
proximity class. Thus, at least in MGB, neurons re-
corded in the same penetration, and therefore largely
within the same MGB subdivision (as judged by anatom-
ical reconstruction of the penetrations), were somewhat
more redundant than neurons across penetrations.
More importantly, however, redundancy in IC was signif-
icantly larger in all proximity classes than in any of the
MGB and A1 proximity classes. Thus, anatomical con-
siderations cannot explain the higher redundancy in IC
relative to MGB and A1.

When probed with pure tones, auditory neurons often
exhibit high sensitivity to a specific frequency, termed
their best frequency (BF). Common BF is therefore a po-
tential source for redundancy between auditory neu-
rons. Neurons with the same BF would be expected to
respond strongly to stimuli containing energy near their
BF and respond weakly to other stimuli, generating stim-
ulus-induced correlations as in Figure 4B. Figure 6B
plots the normalized redundancy (whose distribution is
presented in Figure 5A) between pairs of A1 neurons or-
dered by their BFs. Figure 6A plots the same measure
for numerical simulations of auditory nerve fibers
(ANFs; see Experimental Procedures) having the same
set of BFs and responding to the same stimuli. Large
redundancy values are observed for simulated ANF
pairs with similar BFs, especially in the frequency range
where the stimuli contain most of their energy. In con-
trast, A1 neurons in the same frequency range show
essentially no redundancy. Figures 6C–6F quantifies
this effect by plotting pairs’ redundancy as a function
of the difference between BFs in the three auditory
stations and in the ANF simulation. BF similarity is corre-
lated with strong redundancy in ANF simulations (re-
gression slope of 20.088 bits/octave, n = 45, p < 1026)
and in IC (slope 20.037 bits/octave, n = 39, p < 1026).
This correlation is smaller in MGB and absent in A1
(MGB slope 20.0028 bits/octave, n = 36, p < 0.001;
A1 slope 20.013 bits/octave, n = 45, not significant).
The existence of these strong correlations in IC, and at
the same time, weak correlations in MGB and A1, does
not mean that all IC neurons with the same BF are redun-
dant, as can be clearly seen in Figure 6D. Rather, there
are many IC neurons with strong redundancy in their re-
sponses to this set of sounds, and the common feature
of these pairs is a similar BF. The average dependence
of redundancy on BF difference is similar in IC and in the
ANF simulations. On the other hand, neither in MGB nor
in A1 did we find any pair of neurons, even among those
with similar BF, that had redundancy as large as in IC.

Discussion

By comparing information levels and informational re-
dundancy across a sensory processing pathway, we
identified a dramatic change in stimulus representation
that reflects the characteristics of stimulus representa-
tion in these stations. Starting with a set of sounds that
was designed to induce high informational redundancy
in the auditory periphery (Figure 6A), we found that the
redundancy was still substantial in IC but essentially dis-
appeared in MGB and in A1. This reduction in redun-
dancy was observed for any response representation,
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including spike counts, latency, or temporal spike pat-
terns. While IC redundancies were correlated with the
frequency sensitivity of IC neuronal pairs, this was not
the case in A1 and MGB.

The IC integrates essentially all lower processing
streams, and thus contains neurons which are poten-
tially selective for complex features; it is also believed
to contain a detailed representation of sounds in terms
of their physical features, possibly in overlapping pa-
rameter maps (Casseday et al., 2002). As expected,
our findings suggest that this representation contains
relatively high informational redundancies when stimuli
have only small variations in their spectro-temporal
structure. Above the IC, the representation of the spec-
tro-temporal structure of sounds is degraded (see also
Miller et al., 2002). Although we could expect an asso-
ciated reduction in the ability of cortical neurons to en-
code the identity of sounds, we demonstrate that this
reduction is rather small. While we do not know the na-
ture of processing that MGB and A1 perform on the out-
puts of IC, we do show here that it results in reduced
informational redundancy. Therefore, although A1 neu-
rons respond to a wide range of stimuli in a way that is

Figure 6. Redundancy and Frequency Selectivity

(A) Normalized redundancy plotted as a function of cells’ best fre-

quencies. Simulated responses of auditory nerve fibers (ANFs) fol-

lowing the hair-cell model by Meddis (1986) as implemented by Sla-

ney (Auditory toolbox ver2, 1998). The number of model ANFs and

their best frequencies were matched to the A1 cells (B). Diagonal

values (white) are omitted, since these values measure the redun-

dancy of a cell with itself. (B) Same plot as in (A), but for A1 neurons.

(C) Normalized redundancy between pairs of ANF model neurons as

a function of BF difference. (D) Same as in (C), for recorded IC neu-

rons. (E) Same as in (C), for recorded MGB neurons. (F) Same as in

(C), for recorded A1 neurons.
seemingly not stimulus-specific (Bar-Yosef et al., 2002;
Middlebrooks et al., 1994; Schnupp et al., 2001) (see
also Figures 3F–3H and Figure 4A), the information con-
veyed by different neurons is largely independent.

The reason for this effect is that although A1 cells may
respond similarly to some stimuli, the subsets of stimuli
that evoke similar responses change from one A1 neu-
ron to another. For example, some A1 neurons re-
sponded similarly to both the Natural and Noise variants
of the stimulus (Figure 2G), while others responded sim-
ilarly to Natural and Main but differently to the Noise var-
iant (Figure 2H). Thus, each of these neurons groups the
set of stimuli through a different criterion. Such distrib-
uted coding provides good discrimination between
stimuli when observing multiple neurons, since together
they partition the set of possible stimuli to small enough
sets in an efficient way, given the partition capabilities of
the single neurons. This interpretation again reflects the
point of view that focuses on partitions of stimulus
space rather than similarities of the responses.

In the primary visual cortex, redundancy between neu-
rons has been studied as a function of the size of the
stimulated visual field (Vinje and Gallant, 2000, 2002),
and was found to differ from auditory redundancies in
two crucial aspects. Firstly, redundancies between neu-
rons in V1 have been shown to decrease with increase in
the spatial size of the stimulated visual field. One possi-
ble analog of a restricted stimulated field in vision isa nar-
rowband stimulus in audition. However, using only nar-
rowband stimuli reproduced the same decrease in
redundancy in MGB and A1 relative to IC (Figure 5D).
Thus, increase in bandwidth, at least between the nar-
row- and wideband stimuli used here, does not have
the same effect in A1 as an increase in stimulated visual
field has in V1: A1 neurons, like V1 neurons, show little re-
dundancy with broadband (or large-field) stimuli. How-
ever, in A1, the low redundancy is retained when stimuli
are narrowband, while in V1, smaller stimuli are associ-
ated with increased redundancy (Vinje and Gallant,
2000, 2002). Secondly, visual neural responses showed
an increase in selectivity and a formation of a sparse rep-
resentation of visual scenes. In A1, the redundancy was
much reduced compared with the IC (Figure 5D), but A1
neurons responded to many different sounds in the set
(Figures 3F and 3G and Figure 4A), and were actually
less selective to stimulus identity than IC neurons.
Thus, redundancy in visual cortex processing seems to
operate differently than in A1 with regard to the size of
the stimulus, although low redundancy may be achieved
under the appropriate conditions (Reich et al., 2001).

What could be the computational advantages of such
a redundancy reduction process? A possible outcome is
a ‘‘splitting’’ of the information inside a single frequency
channel as suggested by de Cheveigne (2001). This ad-
dresses the difficult problem of segregating the spectro-
temporal representation of complex soundscapes into
distinct components that belong to different auditory
objects—a segregation that is achieved by the auditory
system in spite of possible overlaps between objects
both in time and in frequency.

More generally, Barlow suggested that reducing the
redundancy between computing elements reflects a pro-
cess where the system extracts meaningful structures in
signals and codes them independently (Barlow, 2001).
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Indeed, reducing redundancy during information pro-
cessing, by mapping stimuli to a higher-dimensional fea-
ture space, is known to provide better discrimination
among complex inputs—as is done in independent com-
ponent analysis (Bell and Sejnowski, 1995) and support
vector machines (Vapnik, 1995). The increased coding
independence of A1 neurons, compared to the IC, may
thus reflect the extraction of relevant information from
acoustic stimuli. This view is supported by our finding
that A1 cells carry considerably less information about
the spectro-temporal structure (relative to IC cells) than
about the more abstract notion of stimulus identity
(data not shown). Similar processes may characterize
other modalities, as for example in inferotemporal visual
neurons that are sensitive to the more abstract notion of
a face, but less sensitive to its physical details. The ob-
servations presented here raise the hypothesis that ob-
taining representations with reduced redundancies in
high processing stations is a generic organizational prin-
ciple of sensory systems that allows easier readout of
behaviorally relevant aspects of the natural scene.

Experimental Procedures

Information about Stimulus Identity

The mutual information between responses R and a set of stimuli S is

defined in terms of their joint distribution: p(S,R). When this distribu-

tion p(S,R) is known exactly, the MI can be calculated as

IðS;RÞ=
X
s;r

pðS;RÞlog

�
pðS;RÞ

pðSÞpðRÞ

�

where

pðSÞ=
X

r

pðS;RÞ

and

pðRÞ=
X

s

pðS;RÞ

are the marginal distributions over the stimuli and responses,

respectively. See the Supplemental Data for a more detailed de-

scription of how the MI is calculated in practice.

Information about stimulus identity was estimated using several

methods. The MI between spike counts and stimuli was estimated

using the histograms of the count distribution per each stimulus.

The bins of the histogram were chosen to achieve near uniform mar-

ginal distribution, and the number of bins was chosen to maximize

the bias-corrected information (using the method of Treves and Pan-

zeri, 1995) conveyed by each cell (see Nelken et al., 2005 for more

details). Latency information was similarly computed using a histo-

gram estimation of latency distribution per stimulus. MI about counts

and latencies was also estimated using a binless method (Victor,

2002), with essentially identical results (correlation coefficients be-

tween binless and binned estimations of MI across populations of

neurons were 0.85, 0.93, and 0.96 in A1, MGB, and IC, respectively).

In addition, MI was estimated using the distribution of binary words,

following the method of de Ruyter van Steveninck et al. (1997) and

Strong et al. (1998). To this end, each spike train was discretized in

several temporal resolutions of 2, 4, 8, 16, and 32 ms (yielding 3–60

bins per word), and the resolution and temporal windows that yielded

maximal (bias-corrected) MI were selected (usually 4 ms resolution).

MI was also calculated by embedding spike trains in Euclidean

spaces and using binless estimation strategies with the method of

Victor (2002) and using the 2nd order expansion of Panzeri et al.

(2001), again yielding similar results. In A1 and MGB, the MI in first

spike latencies and binary words (de Ruyter van Steveninck et al.,

1997) yielded about double the information that is conveyed by spike

counts. In IC, using binary words (de Ruyter van Steveninck et al.,

1997) yielded about 30% more information than spike counts.

For a finite sample size, mutual-information estimators that are

based on an estimated joint distribution are biased, having on aver-
age positive information even when the two variables are indepen-

dent. We estimated this bias by shuffling neural responses among

all trials. This bias estimator was found to be consistent with the an-

alytical approximation derived in Panzeri and Treves (1996) and

Treves and Panzeri (1995). The resulting baseline information was

subtracted from all information calculations. In all calculations of

MI based on scalar statistics of the spike trains, the maximal magni-

tude of the biases did not exceed 15% of the information.

Redundancy Quantification

Informational redundancy between pairs of neurons can be quanti-

fied by the difference between information conveyed by a group

of neurons and the sum of information conveyed by those neurons

individually:

IðX1;.;Xn; SÞ2
Xn

i = 1

IðXi ; SÞ

is a measure of redundancy previously used for pairs of neurons

(Brenner et al., 2000; Gat and Tishby, 1999; Narayanan et al., 2005;

Rieke et al., 1997; Rolls and Treves, 1998; Schneidman et al., 2003;

Warland et al., 1997) . This can be also presented as the difference

between two multi-information terms

IðX1; .; XnjSÞ2 IðX1; .; XnÞ

where multi-information is a natural extension of mutual information,

defined as the following (Studenty and Vejnarova, 1998):

IðX1; .; XnÞ=
X

x1 ;.;xn

pðx1;.; xnÞlog

�
pðx1;.; xnÞ

pðx1Þ$.$pðxnÞ

�

The first term, stimulus-conditioned information, is large when neu-

ronal responses are correlated per each given stimulus, and is zero

only when the neuronal responses are independent given the stimu-

lus. In our data, we found that the first term was small for pairs of

neurons (see Figure S1), meaning that the joint distribution can be

well approximated as being independent when conditioned on the

stimulus. Formally, the joint conditional distribution

pðx1;.; xnjsÞ

is approximated by the product of the conditional marginals

YN
i = 1

pðxijsÞ

for every stimulus s. Note that this does not imply unconditional

independence:

pðx1;.; xnÞ=
YN
i = 1

pðxiÞ:

To quantify the redundancy between a pair of neurons caused

by between-stimuli covariation, we used the mutual information

I(X1; X2), where the neurons are coupled under the stimulus-condi-

tioned independence approximation. For groups of neurons, we

used the negative of their multi-information, again under stimulus-

conditional independence approximation.

Since redundancy tends to grow when single-unit information

about the stimulus grows, the varying information levels in the differ-

ent auditory stations required normalizing the redundancies to a uni-

fied scale. Under conditional independence the redundancy is lim-

ited by the sum of single-unit information terms:

IðX1; .; XnÞ%IðX1; .; Xn; SÞ=
Xn

i = 1

IðXi ; SÞ:

The redundancy was therefore normalized as the following (as in

Brenner et al., 2000; Reich et al., 2001):

IðX1; .; XnÞP
i

IðXi ; SÞ :

The effects described in this paper are considerably more pro-

nounced for the unnormalized measures (see Figure S2).
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Electrophysiological Recordings

For detailed methods, see Bar-Yosef et al. (2002). Extracellular re-

cordings were made in A1 of nine halothane-anesthetized cats, in

medial geniculate body of two halothane-anesthetized cats, and in-

ferior colliculus of nine isoflurane-anesthetized and two halothane-

anesthetized cats. Anesthesia was induced by ketamine and xyla-

zine and maintained with halothane (0.25%–1.5%, all A1 and MGB

cats, and two IC cats) or isoflurane (0.1%–2% nine IC cats) in 70%

N2O using standard protocols authorized by the committee for ani-

mal care and ethics of the Hebrew University Haddasah Medical

School (A1, MGB, and IC recordings) and Johns Hopkins University

(IC recordings). Single neurons were recorded using metal micro-

electrodes and an online spike sorter (MSD, Alpha-Omega) or a

Schmitt trigger. MGB neurons were further sorted offline. All neu-

rons were well separated. In total we used data from 45 A1 neurons,

36 MGB neurons, and 39 IC neurons. In A1, penetrations were per-

formed over the whole dorso-ventral extent of the appropriate fre-

quency slab (between about 2 and 8 kHz). In MGB, all penetrations

were vertical, traversing a number of isofrequency laminae, and re-

cording locations have been histologically localized in all divisions.

In IC vertical penetrations were used in all experiments except

one, in which electrode penetrations were performed at a shallow

angle through the cerebellum, traversing the IC in a caudo-rostral

axis. We tried to map the full medio-lateral extent of the nucleus,

but in each animal only a small number of electrode penetrations

were performed. Based on the sequence of best frequencies along

the track, the IC recordings are most likely in the central nucleus.

Stimuli were presented 20 times (A1 and MGB recordings and IC re-

cordings in 12 neurons) and 5–20 times (IC recordings in 27 neu-

rons). For 13 IC neurons, the sampling rate of the stimuli was in-

creased to place the center frequency of the chirp at their BF.

Signals were presented to the animals using sealed, calibrated ear-

phones at 60–80 dB SPL, at the preferred aurality of the neurons as

determined using broadband noise bursts. Sounds are from the Cor-

nell Laboratory of Ornithology and have been selected and modified

as in Bar-Yosef et al., (2002). The responses to the Natural and Main

versions in A1 have been described in Bar-Yosef et al. (2002); the

rest of the data in A1 and all the MGB and IC responses are new.

ANF Simulations

Responses of auditory nerve fibers were simulated using an auditory

toolbox for Matlab by Slaney (Auditory toolbox ver2. Technical re-

port. 1998). The peripheral filters are g-tone filters. They are followed

by half-wave rectification and low-pass filtering as implemented in

a version of the Meddis hair-cell model (Meddis, 1986). Spikes

were generated by a nonhomogeneous Poisson generator, using

the output of the hair-cell stage as a rate function.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/51/3/359/DC1/.
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