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Abstract—We have developed a classifier capable of locat-

ing and identifying speech sounds using activity from rat

auditory cortex with an accuracy equivalent to behavioral

performance and without the need to specify the onset time

of the speech sounds. This classifier can identify speech

sounds from a large speech set within 40 ms of stimulus

presentation. To compare the temporal limits of the classi-

fier to behavior, we developed a novel task that requires rats

to identify individual consonant sounds from a stream of

distracter consonants. The classifier successfully predicted

the ability of rats to accurately identify speech sounds for

syllable presentation rates up to 10 syllables per second

(up to 17.9 ± 1.5 bits/s), which is comparable to human per-

formance. Our results demonstrate that the spatiotemporal

patterns generated in primary auditory cortex can be used

to quickly and accurately identify consonant sounds from

a continuous speech stream without prior knowledge of

the stimulus onset times. Improved understanding of the

neural mechanisms that support robust speech processing

in difficult listening conditions could improve the identifica-

tion and treatment of a variety of speech-processing disor-

ders. � 2013 IBRO. Published by Elsevier Ltd. All rights

reserved.

Key words: classifier, rat, auditory cortex, coding, temporal

patterns.

INTRODUCTION

Speech sounds evoke unique spatiotemporal patterns in

the auditory cortex of many species (Kuhl and Miller,

1975; Eggermont, 1995; Engineer et al., 2008). Primary

auditory cortex (A1) neurons respond to most

consonants, which evoke short, transient bursts of

neural activity, but respond with different spatiotemporal

patterns for different sounds (Engineer et al., 2008). For

example, the consonant /d/ evokes activity first in

neurons tuned to high frequencies, followed by neurons

tuned to lower frequencies. The sound /b/ causes the
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opposite pattern such that low-frequency neurons fire

approximately 20 ms before the high-frequency neurons

(Engineer et al., 2008; Shetake et al., 2011; Perez

et al., 2012; Ranasinghe et al., 2012b). These patterns

of activity can be used to identify the evoking auditory

stimulus in both human (Steinschneider et al., 2005;

Chang et al., 2010; Pasley et al., 2012) and animal

auditory cortex (Engineer et al., 2008; Mesgarani et al.,

2008; Huetz et al., 2009; Bizley et al., 2010; Shetake

et al., 2011; Perez et al., 2012; Ranasinghe et al.,

2012a; Centanni et al., 2013a).

Rats are a good model of human speech sound

discrimination as these rodents have neural and

behavioral speech discrimination thresholds that are

similar to humans. Rats can discriminate isolated

human speech sounds with high levels of accuracy

(Engineer et al., 2008; Perez et al., 2012; Centanni

et al., 2013a). Rats and humans have similar thresholds

for discriminating spectrally-degraded speech sounds,

down to as few as four bands of spectral information

(Ranasinghe et al., 2012b). Rats and humans are both

able to discriminate speech sounds when presented at

0-dB signal to noise ratio (Shetake et al., 2011).

In both rats and humans, sounds that evoke different

patterns of neural activity are more easily discriminated

behaviorally than sounds that evoke similar patterns of

activity (Engineer et al., 2008; Shetake et al., 2011;

Ranasinghe et al., 2012b). Speech sounds presented in

background noise evoke neural response patterns with

longer latency and lower firing rate than speech

presented in quiet and the extent of these differences is

correlated with behavioral performance (Martin and

Stapells, 2005; Shetake et al., 2011). Neural activity

patterns in anesthetized rats also predict behavioral

discrimination ability of temporally degraded speech

sounds (Ranasinghe et al., 2012b).

The relationship between neural activity and

associated behavior is often analyzed using minimum

distance classifiers, but classifiers used in previous

studies typically differ from behavioral processes in one

key aspect: the classifiers were provided with the

stimulus onset time, which greatly simplifies the problem

of speech classification (Engineer et al., 2008; Shetake

et al., 2011; Perez et al., 2012; Ranasinghe et al.,

2012a; Centanni et al., 2013a,b). During natural

listening, stimulus onset times occur at irregular

intervals. One possible correction allows a classifier to

look through an entire recording sweep, rather than only

considering activity immediately following stimulus

onset. The classifier then guesses the location and
d.
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identity of the sound post hoc by picking the location most

similar to a template (Shetake et al., 2011). While this

method is highly accurate and predicts behavioral ability

without the need to provide the onset time, the method

could not be implemented in real time and assumes that

a stimulus was present. We expected that large

numbers of recording sites would be able to accurately

identify a sound’s onset, since the onset response in A1

to sound is well known (Anderson et al., 2006; Engineer

et al., 2008; Dong et al., 2011; Centanni et al., 2013b).

We hypothesized that with many recording sites, A1

activity can also be used for identification of the sound

with a very brief delay consistent with behavioral

performance in humans and animals.
EXPERIMENTAL PROCEDURES

Speech stimuli

For this study, we used the same stimuli as several

previous studies in our lab (Engineer et al., 2008; Floody

et al., 2010; Porter et al., 2011; Shetake et al., 2011;

Ranasinghe et al., 2012b). We used nine English

consonant–vowel–consonant (CVC) speech sounds

differing only by the initial consonant: (/bad/, /dad/, /gad/,

/kad/, /pad/, /sad/, /tad/, /wad/, and /zad/), which were

recorded in a double-walled, soundproof booth spoken

by a female native-English speaker. The spectral

envelope was shifted up in frequency by a factor of two

while preserving all spectral information using the

STRAIGHT vocoder (Kawahara, 1997) to better

accommodate the rat hearing range. The intensity of

each sound was calibrated with respect to its length,

such that the loudest 100 ms was presented at 60-dB

sound pressure level (SPL) and 5 ms on and off ramps

were added to prevent any artifacts.
Surgical procedure – Anesthetized recordings

Multi-unit recordings were acquired from the A1 of

anesthetized, experimentally-naı̈ve female Sprague–

Dawley rats (Charles River, Wilmington, MA, USA).

Recording procedures are described in detail elsewhere

(Engineer et al., 2008; Shetake et al., 2011; Ranasinghe

et al., 2012b). In brief, animals were anesthetized with

pentobarbital (50 mg/kg) and were given supplemental

dilute pentobarbital (8 mg/ml) as needed to maintain

areflexia, along with a 1:1 mixture of dextrose (5%) and

standard Ringer’s lactate to prevent dehydration. A

tracheotomy was performed to ensure ease of breathing

throughout the experiment and filtered air was provided

through an air tube fixed at the open end of the

tracheotomy. Craniotomy and durotomy were performed,

exposing right A1. Four Parylene-coated tungsten

microelectrodes (1–2 MO) were simultaneously lowered to

layer (4/5) of right A1 (�600 lm). Electrode penetrations

were marked using blood vessels as landmarks.

Brief (25 ms) tones were presented at 90 randomly

interleaved frequencies (1–47 kHz) at 16 intensities (0–

75 dB SPL) to determine the characteristic frequency

(CF) of each site. A set of four stimuli were created

using Adobe Audition for comparison to our behavioral
task (described below). Each stimulus consisted of a

train of six individual speech sounds such that across all

four sequences, all 24 possible sound pairs were

presented once (/bad bad gad sad tad dad/, /tad tad

sad gad bad dad/, /gad gad tad bad sad dad/, /sad sad

bad tad gad dad/). The temporal envelope of the stimuli

was compressed so that when presented with a 0-s

inter-stimulus-interval (ISI), sounds were presented at 2,

4, 5, 6.7, 10 and 20 syllables per second (sps). All

speech stimuli were randomly interleaved, and

presented at 20 repeats per recording site. All sounds

were presented approximately 10 cm from the left ear of

the rat. Stimulus generation, data acquisition and spike

sorting were performed with Tucker-Davis hardware

(RP2.1 and RX5) and software (Brainware).
Surgical procedure – Awake recordings

Rats were anesthetized and implanted with a chronic array

of 16 polyimide-insulated 50-lm diameter tungsten

microwires. The implantation surgery and microwire

arrays have been previously reported in detail (Rennaker

et al., 2005). Briefly, subjects were anesthetized with an

intramuscular injection of a mixture of ketamine, xylazine

and acepromazine (50, 20, 5 mg/kg, respectively).

Atropine and dexamethazone were administered

subcutaneously prior to and following surgery. A midline

incision was made, exposing the top of the skull, and a

section of the right temporalis muscle was removed to

access A1. Six bone screws were fixed to the dorsal

surface of the skull (two in each parietal bone and one in

each frontal bone) to provide structural support for the

head cap. The two middle screws had attached leads to

serve as a reference wire and a grounding wire.

Craniotomy and durotomy were performed to expose the

cortex in the region of A1. The microwire array was then

inserted to a depth of 550–600 lm (layer IV/V) in A1

using a custom-built mechanical inserter (Rennaker

et al., 2005). The area was sealed with a silicone

elastomer (Kwik-Cast, World Precision Instruments Inc.,

Sarasota, FL, USA) and the head cap was built with a

connector secured with acrylic. Finally, the skin around

the implant was sutured in the front and the back of the

head cap. Subjects were given prophylactic minocycline

in water ad libitum for 2 days prior to and 5 days

following surgery to lessen immune responses

(Rennaker et al., 2005), and were also given Rimadyl

tablets for 3 days after surgery to minimize discomfort.

Topical antibiotic was applied to the incision to prevent

infection. After a minimum of 5 days of recovery, neural

activity was collected in a single 2.5-h session and

saved using a custom MATLAB program. The session

included an abridged tuning curve (to assess each site’s

best frequency) and the same set of speech sequence

stimuli presented to the anesthetized animals. All

passive sound sets were created and run through

custom MATLAB programming.
Neural analysis and classifier

We designed a classifier that does not require precise

information about the sound’s onset time by modifying
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a well-established classifier (Foffani and Moxon, 2004;

Schnupp et al., 2006; Engineer et al., 2008; Shetake

et al., 2011; Perez et al., 2012; Ranasinghe et al.,

2012b; Centanni et al., 2013a,b). The classifier

searched neural activity (from a randomly selected

subgroup of sites) for the onset of a sound by locating

a pattern of activity observed in the average response

to many repetitions. We trained the classifier to

recognize patterns of activity evoked by several

auditory stimuli (Fig. 1A), by providing the mean

activity across 19 repeats of each stimulus (Fig. 1D–G,

right panels). The classifier then analyzed the neural

activity generated by a single presentation (Fig. 1B) to

determine whether one of the trained sounds occurred.

The classifier calculated a unique decision threshold

for each possible consonant sound in order to allow

the classifier to determine which sound most likely

caused the activity. A classifier decision was registered

within 40 ms of stimulus onset because this was the

duration of the stored template for each onset pattern.

To calculate the thresholds, the classifier compared the

similarity between each average pattern of activity
Fig. 1. Schematic of the classifier using simulated neural data. (A) Exam

sweep from low to high frequency, one slow sweep from low to high frequen

from high to low frequency. (B) Simulated single-trial neural response from

shown without any smoothing or other manipulation and shows that the e

firing. (C) The same activity from panel B after a Gaussian filter was applied

total number of sites and effectively highlighted the evoked patterns while

Examples of the classifier locating and identifying each of the four FM swee

from the average neural activity across 19 sweeps. The normalized metr

between the single-trial response and the template, and then normalizing

classifier. In a case of two templates making a guess, the classifier would

that is most similar).
(template) to the response of each single repeat (20

repeats � 20 speech sounds). To reduce false alarms

caused by spontaneous activity, data were smoothed

across similarly tuned recording sites using a Gaussian

filter (Giraud et al., 2000; Langers et al., 2003, 2007)

(Fig. 1C). The classifier evaluated a variety of half-

widths for this spatial filter; from 1% of the total

number of sites all the way to 50% of sites (Fig. 2A).

The most effective filter had a half-width including 15%

of the total number of sites, and was used for all

results reported here.

Euclidean distance was used to measure the

similarity between the single trial and each template

and was calculated by taking the square root of the

sum of the squared differences between two patterns

of neural activity. The threshold value for each sound

was set to ensure the maximum number of correct

responses while minimizing the number of false alarms

(Fig. 2B). The threshold was calculated using the

equation:

th ¼ maxðjEDm � �EDu � jÞ
ple waveform of four frequency-modulated (FM) sweeps; one fast

cy, one fast sweep from high to low frequency, and one slow sweep

200 sites, organized by characteristic frequency. This single trial is

voked activity patterns are difficult to distinguish from spontaneous

to the spectral dimension. This filter had a half-width of 15% of the

minimizing the influence of spontaneous action potentials. (D–G)

ps. The template is shown to the right of each panel and is created

ic (NM) shown is calculated by comparing the Euclidean distance

by the threshold values. NM values at 1 indicate a guess by the

use the larger of the two raw values as a tie breaker (e.g. the value



Fig. 2. (A) Average classifier performance using 150 neural recording sites after different amounts of Gaussian smoothing. Data were smoothed

using a Gaussian filter with varying half-widths from 0% to 90% of the total number of sites. The classifier then used the resulting datasets to attempt

to locate and identify each of nine consonant sounds. Though half-width between 10% and 20% were highly accurate, a half-width of 15% of the

total number of sites was optimal. (B) Decision thresholds were calculated by comparing single-trial neural responses to the average evoked

response to each consonant sound. For example, to create the decision threshold for the sound /sad/, the average response to this sound (over 19

repeats) was compared to all single-trial responses to every sound. The similarity of the single trials to the template was calculated using Euclidean

distance. We then plotted the distributions of Euclidean distance values generated when the single trials were evoked by the template sound (e.g.

Matched trials: when template and single trial were both evoked by /sad/) vs. the Euclidean distance values when the template did not match the

single trial (e.g. Unmatched trials: when the template was evoked by /bad/ while the template was evoked by /sad/). The decision threshold was then

set at the point at which the distributions were most different, as marked by a triangle in the bottom half of the figure. This maximized the sensitivity

index so that the most correct answers were preserved while excluding the maximum number of false alarms. (C) Mean detection (circle markers)

and identification (square markers) performance of the classifier using different temporal bin sizes. Error bars represent standard error of the mean.

Filled circles represent values significantly above chance performance (10%). As expected from previous studies, our classifier performs

significantly better when spike timing information is preserved (e.g. temporal bins smaller than 10 ms). The classifier is still able to correctly signal

that a sound occurred using bins between 10 and 20 ms, but begins to false alarm to silence when spike timing information is completely removed

(e.g. 40 ms bins). This result suggests that the number of action potentials can be used to locate the onset of a sound, but precise spike timing

information is required for consonant identification.
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where th is the threshold being calculated, EDm� is the

discretized distribution of Euclidean distance values calculated

between the template and the single-trial responses evoked by

the template sound (matched comparisons: e.g. the average

response to /dad/ compared to a single-trial response to /dad/)

and EDu� is the discretized distribution of Euclidean distance

values calculated between the template and the single-trial

responses evoked by a different sound (unmatched

comparisons: e.g. the average response to /dad/ compared to a

single-trial response to /bad/, /gad/, /pad/, /kad/, /tad/, /sad/,

/zad/, or /wad/).

There is significant variability in the difference

between templates because some sounds trigger a

larger neural response than others (Fig. 3A). To

compensate for the variability in neural response

to each sound, the classifier normalized the data to

center all comparisons on a single scale. This was

accomplished by calculating a normalized metric (NM)

of Euclidean distance values for each single trial so

that the values centered on 0 and templates similar

to the single trial returned positive values while

templates less similar to the single trial returned

negative values (Fig. 3B). This was done using the

equation:

NMc ¼ �
ðEdc � EDspÞ � thmin

thc

� �

where c is the window currently being analyzed, EDc is the

Euclidean distance between that point and the template, EDsp is

the Euclidean distance between the template and spontaneous
activity, thc is the threshold for the template and thmin is the

minimum threshold across all nine templates.

The classifier searched each single-trial recording

sweep and identified when a pattern of activity

occurred (when a threshold was crossed) and which

stimulus caused that pattern of activity. If more than

one template crossed the threshold within a single bin,

the classifier chose the template with the highest NM

value; e.g. the template that was closest to the single

trial being analyzed. To count as a correct guess, the

classifier must recognize the sound within 40 ms of

the stimulus onset, which is considerably shorter than

the 500-ms hit window the rats were given to respond

behaviorally. The longer behavioral hit window allowed

for processing time and motor movement of the

animal, while the information needed for the classifier

to guess was contained in the first 40 ms (Miller and

Nicely, 1955; Kuhl and Miller, 1975; Engineer et al.,

2008; Porter et al., 2011; Shetake et al., 2011; Perez

et al., 2012; Ranasinghe et al., 2012b). The classifier

was run thirty times, with a different randomly-sampled

neural population for each run. For comparison to

behavioral performance, the average percent correct

for each run was calculated and plotted with the

average last day behavioral performance of rats

trained on speech sound discrimination tasks. The

strength of the correlation was measured using the

Pearson correlation coefficient.

To consider the amount of information present in the

neural response to each speech sound, we calculated



Fig. 3. Example of normalized metric calculation using speech

sounds. (A) An example of the Euclidean distance values calculated

between a single trial and each of the templates. The Euclidean

distance between each template and the spontaneous firing at the

beginning of the sweep were highly variable and each comparison

was therefore on a different scale, making comparisons difficult. (B)

To allow for a more accurate comparison across templates, we

normalized the Euclidean distance values using the comparison

between the template and spontaneous firing as well as the threshold

value for that template (see Experimental procedures for detailed

equation). The comparison values were then centered on 0 and

values indicating similarity were positive and values indicating

difference were negative.
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the number of bits present in the neural activity pattern

evoked by each stimulus. Bits were calculated using the

following equation:

bits ¼ pxy � log2

pxy

ðpx � pyÞ

� �� �
� pr

where pxy is the percent of correct guesses, px is the number of

target sounds, py is the number of guesses for this sound, and pr

is the number of sounds presented in one second (Brillouin,

2013). Chance performance for classifier tasks was 10% since

each sound was approximately 400-ms long and the classifier

was only correct if it guessed within 40 ms of the sound’s onset.

Simulation of correlated data

Neural recordings were acquired in groups of four

simultaneously-recorded electrode locations. This

arrangement caused our neural recordings to be un-

correlated with each other. To evaluate whether this

would bias our classifier performance, we simulated the

amount of correlated firing activity that would be

expected if all sites were recorded at the same time. To

pseudo-correlate the data, we evaluated the average

percentage of sites that fired at each time point during a

recording sweep using 1-ms bins. We then compared

these values to those in the general population. At any

time point where the proportion of firing sites in the full

dataset was less than the proportion of firing sites

across simultaneously recorded sites, single action
potentials were iteratively added at that time point to

randomly chosen sites. Action potentials were added

until the proportion of sites firing across the entire

dataset matched the proportion of simultaneously

recorded sites firing at each millisecond time point.

Behavioral paradigm

Sprague–Dawley albino rats were trained using either an

established lever press paradigm for the isolated speech

task (Engineer et al., 2008; Shetake et al., 2011; Perez

et al., 2012; Ranasinghe et al., 2012b) or an operant

nose poke paradigm (for the speech sequence task),

developed by Dr. Robert Rennaker (Sloan et al., 2009).

Each rat trained for two 1-h sessions per day, 5 days

per week. For the isolated speech task, the behavioral

training procedures and data reported here were the

same as was reported in Engineer et al. (2008). In brief,

six rats were trained to press a lever when a target

speech sound was presented and to withhold pressing

when a distracter sound was presented (/d/ vs. /s/, /d/

vs. /t/, and /d/ vs. /b/ and /g/). Rats were trained for

2 weeks on the tasks in the order given and

performance was assessed after training on each task

to obtain the values reported in Engineer et al. (2008)

and the current study.

For the speech sequence task, all animals were first

trained to associate the infrared (IR) nose poke with the

sugar pellet reward. Each time the rat broke the IR

beam, the target speech sound (/dad/) was played and

a 45-mg sugar pellet was dispensed. After each animal

earned over 100 pellets, each rat was moved onto a

series of training stages, during which d0 was used as a

criterion for advancing to the next stage (Green and

Swets, 1966). During the first training stage, rats were

trained to wait patiently in the nose poke and withdraw

their nose from the nose poke after hearing the target.

This stage lasted until the animal performed with a d0

greater than 1.5 for 10 sessions. For these first two

stages, the animal had a response window of 800 ms to

withdraw their nose in response to the target.

Rats were then introduced to the four possible

distracters by presenting a string of repeats of a single

distracter prior to the presentation of the target. The ISI

was 1 s and the response window was also reduced to

650 ms during these stages. Since the task involved

random patterns of distracters, we trained the animals

on a fixed pattern of distracters to introduce the concept

of multiple distracters per trial. For each trial in this

stage, two or three of the four distractors were randomly

selected and alternated. In the final two training stages,

a sequence for each trial was randomly generated using

all four possible distracters and presented to ensure that

the rat could not memorize the pattern or time their

responses. In addition, the ISI was reduced to 0 s and

the response window was reduced to 500 ms. Once rats

performed with a d0 > 1.5 for at least two sessions, they

were introduced to each presentation rate. During this

period of training, rats were presented with blocks of 20

trials each. Each trial contained a random hold time (the

time before the onset of the target sound) between 2

and 7 s, with the sounds prior to the target consisting of



Fig. 4. Schematic of the behavioral task. Speech sounds are presented in random order beginning when a rat breaks the infrared (IR) beam. Target

sound (/dad/) was presented in a single random location anywhere from the third sound of the sequence until the end of the 2–7 s trial. From the

onset of the target sound, rats had 500 ms to respond by withdrawing from the IR beam. If the target sound was less than 500 ms long, additional

distracters were added afterward to avoid the use of silence as a cue. Correct responses to the target were rewarded with a 45-mg sugar pellet.

Incorrect responses to distracter sounds or missed responses to the target were punished by a 5-s timeout in which the booth lights were

extinguished and the IR beam was disabled.
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randomly selected distracters (Fig. 4). The presentation

rate of each block was either 2 sps or one of the

additional presentation rates. These blocks were

presented in random order. 20% of trials were catch

trials in which no target was presented to ensure the

rats were listening for the target and not attempting to

time the target location (Fig. 4).

Animals were tested for a minimum of 10 sessions

during which all six presentation rates were randomly

interleaved. The animals were individually housed with

free access to water and were food deprived to no less

than 85% body weight while experimenting. When not

experimenting, they were given free access to water

and food and housed on a reverse 12:12 light/dark

schedule. The behavioral paradigm was written and

executed via a custom-designed MATLAB (The

Mathworks Inc., Natick, MA, USA) program and run

through a PC computer with an external real time

digital-to-analog processor (RP2.1; Tucker-Davis

Technologies, Alachua, FL, USA), which monitored the

IR nose poke and controlled the stimuli presentation and

lights. Each of the five sounds was analyzed for

response rate (number of responses/number of

presentations * 100). Target responses are referred to

as hits and the summed response to all four distracters

is referred to as false alarm rate. Overall performance is

reported in terms of hits-false alarms per presentation

rate. All protocols and recording procedures were

approved by the University of Texas at Dallas

Institutional Animal Care and Use Committee (Protocol

Number: 99-06). All surgeries were performed under

either pentobarbital or ketamine anesthesia and all

efforts were made to minimize suffering.
RESULTS

Neural activity patterns predict stimulus identity

Our classifier was tested using previously published

neural activity evoked by nine different consonant

sounds (Engineer et al., 2008) (Fig. 5). The first test of

the classifier used 2-ms temporal bins over an 80-ms

sliding window (which created an analysis window of

40 units), which is similar to the temporal parameters

used in previous studies (Engineer et al., 2008). Overall,

this classifier performed at chance levels (10% chance

vs. 10.7 ± 0.6% correct; unpaired t-test, p= 0.86;

Fig. 2A). We hypothesized that the poor performance of

the classifier was due to the influence of un-correlated,

spontaneous activity across channels. Since our

recordings were acquired in groups of four sites at a

time, some sites fired in the absence of the population

response, causing many false alarms for the classifier.

To attain a more reliable estimate of the neural activity

in each frequency band, we used a Gaussian filter to

smooth activity along the tonotopic spatial dimension.

This method ensured low variability, e.g. noise in the

neural signal (Bear et al., 1987; Sengpiel and Kind,

2002; Poirazi et al., 2003a,b; Hao et al., 2009) (Fig. 5B).

Although a range of Gaussian filter half-widths

generated high accuracy from the classifier (10–30% of

the total number of sites), a half-width of 15% of the

total number of sites was optimal (Fig. 2A).

After Gaussian smoothing, the classifier was able to

perform the identification task with high levels of

accuracy (58.3 ± 5.5%; Fig. 6A). As expected from

previous studies, this classifier relied on spike timing

information (2-ms temporal bins) and was not



Fig. 5. A Gaussian filter was necessary for highlighting evoked activity. (A) Single-trial neural activity patterns in A1 without any smoothing. The first

40 ms of average evoked activity from each site is organized by characteristic frequency. Each consonant evoked a unique pattern of activity such

that each group of neurons fire at a different latency depending on the characteristic frequency of the group. (B) Average activity over 20 trials

plotted without smoothing. Red lines mark the onset response of each frequency group. (C) The same neural activity plotted in panel B after a

Gaussian filter has been applied to the spectral dimension. We used a filter with a half-width of 15% of the total number of sites. This ensured that

spontaneous activity is not as influential on the classifier as evoked activity. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 6. A Euclidean distance classifier could locate and identify nine consonant speech sounds with high levels of accuracy. (A) The classifier was

able to locate the onset of a speech stimulus with high levels of accuracy (circle markers), but required a larger number of sites to accurately identify

the speech sound (square markers). Error bars represent standard error of the mean. Filled markers represent values significantly above chance

performance (10%). This is likely due to the limited frequency range included in small groups of sites. Previous classifiers provided the stimulus

onset time and were able to achieve high levels of accuracy using single sites of neural activity. (B) Number of bits encoded in various subgroups of

sites. 60 sites were able to locate the sound onset, but could not identify the sound, as this number of sites contained less than 0.8 ± 0.03 bits of

information. Larger groups of sites contained up to 2 bits of information (1.6 ± 0.01 with 400 sites) and were better able to perform the task. (C)

Confusion matrix of classifier performance on nine English consonant sounds. The classifier performed the task with high levels of accuracy at every

sound presented. The number of classifier guesses (out of 20 trials) is listed in each square of the matrix and the shading represents overall percent

correct.

298 T. M. Centanni et al. / Neuroscience 258 (2014) 292–306
significantly different from chance performance (10% is

chance level) when temporal bins of 10 ms were used

(11.3 ± 9.3% correct using 10 ms bins; t-test vs. chance
level, p= 0.89; Fig. 2C). When spike timing information

was removed (by summing the number of action

potentials in the 40-ms window) the classifier fell below

chance level at both detection and identification tasks

(Fig. 2C). As shown previously, when spike timing was

no longer preserved, spontaneous activity could not be

distinguished from evoked activity, and the classifier lost

accuracy (Engineer et al., 2008; Huetz et al., 2009;

Panzeri and Diamond, 2010; Shetake et al., 2011;

Perez et al., 2012; Ranasinghe et al., 2012a).
As expected, spatiotemporal patterns of evoked

neural activity are identifiable when neurons with a

variety of CFs are recorded (Creutzfeldt et al., 1980;

Wang et al., 1995; Bizley et al., 2010). For example, if

the stimulus onset time was unknown and only one

recording site was available for analysis, the classifier

did not perform significantly above chance. Small

numbers of sites (as few as 15) were able to detect the

location of a stimulus onset significantly above chance

(10% was chance performance; 60 site detection at

51.4 ± 22.6% correct, one-tailed t-test vs. chance

performance, p= 0.04; Fig. 6A), but performed at

chance when asked to identify the sound (60-site



Fig. 7. Large numbers of sites are needed to encompass the complete frequency range. (A) Single-trial neural activity evoked by each of nine

consonant sounds, organized by characteristic frequency and shown without any smoothing. As compared to the responses by 200 sites (see

Fig. 2), these responses are less distinct even without averaging or smoothing. (B) Average activity over 20 trials plotted without smoothing. Red

lines mark the onset response of each frequency group. (C) The same neural activity plotted in panel B after a Gaussian filter has been applied to

the spectral dimension. We used a filter with a half-width of 15% of the total number of sites. Although this smoothing does highlight evoked activity

over spontaneous firing, responses from 60 sites are not sufficient to produce clearly distinguishable patterns, especially as compared to the

responses from 200 sites (see Fig. 2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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discrimination performance at 31.2 ± 13.6% correct, one-

tailed t-test vs. chance performance, p= 0.07; Fig. 6A).

This level of performance using 60 sites is likely due to

the reduction in frequency information represented by

this number of recording sites (Fig. 7) and corresponds

with the amount of bits encoded with this number of

sites (0.8 ± 0.03 bits of information) compared to almost

2.5 bits of information in a group of 400 sites

(2.3 ± 0.01; Fig. 6B) (Brillouin, 2013).

This more comprehensive frequency range

represented in larger site groups is needed for

consonant identification (Fig. 6). For example, in

response to the sound /dad/, sites with a CF above

�7 kHz responded to the consonant /d/ first, while lower

frequency sites fired only to the onset of the vowel

(Fig. 5). To the sound /tad/, the same pattern occurred,

but the latency of the low-frequency sites was later than

in response to /tad/. If only high-frequency sites were

sampled, these two sounds would be indistinguishable

(Fig. 5). When the classifier was given sites with a small

band of CFs (below 6 kHz), average performance was

24.4 ± 9.5% (t-test vs. 10% chance performance;

p= 0.13). Using large numbers of sites, this entire

frequency range was represented and the classifier was

able to perform the task well above chance level

(Fig. 6A, C). These results validate that our new

classifier is able perform the task using neural activity

without specific knowledge of the stimulus onset time. In

addition, our results show that a Euclidean distance

classifier can perform with high levels of accuracy

without being forced to guess.

Our new classifier performed significantly above

chance at identifying speech sounds without prior

knowledge of the stimulus onset time, but may not have

performed the task as well as rats could behaviorally.

We used behavioral data published in our previous

report (Engineer et al., 2008) for comparison with this

new classifier. Six rats were trained to press a lever
when a target speech sound was presented and to

withhold pressing when a distracter sound was presented

(/d/ vs. /s/, /d/ vs. /t/, /d/ vs. /b/, and /d/ vs. /g/). Using

groups of 150 recording sites, we ran the new classifier

on these same, two-alternative forced-choice tasks. Our

classifier performed with accuracy levels that were not

significantly different from rats’ behavioral performance

(average classifier performance was 81.8 ± 13.0% vs.

88.3 ± 2.4% correct by the rats; unpaired t-test,
p= 0.59). This result suggests that our new classifier

performance was comparable to the rats’ behavioral

performance and may be applicable to a range of

speech stimuli and new behavior tasks.
The classifier is able to identify speech sounds in
sequences

Identifying the onset of a speech sound using neural

activity is relatively easy when speech sounds are

isolated (Fig. 6A). To test whether the classifier was

limited to sounds presented in isolation, we tested the

classifier’s performance on neural responses to speech

sounds imbedded in sequences. When the classifier

crossed the threshold for an evoked response, it

chooses the identity of the sound as the template with

the highest value, even if multiple templates are similar

enough to trigger a response (Fig. 8). The classifier was

able to guess the location of the target sound (within

40 ms of the onset of the sound) with an accuracy of

65.5 ± 11.1% using random groups of 150 sites. Our

new classifier is able to identify speech sounds without

prior knowledge of the stimulus onset time, and does

not rely on silent context.

The clear speech sequences we used were a bit

unnatural and slower than conversational speech. We

compressed the speech sounds so that our sequences

could be presented at a variety of speeds that not only

closely resemble conversational speed, but also test the



Fig. 8. Example classifier run on a four speech sound sequence. A single trial example of the classifier’s performance on a speech sequence is

plotted by template. The classifier analyzed a single-trial neural response to the sequence ‘bad tad gad dad’ by comparing the response to each of

five templates. (A) Waveforms of the four speech sounds presented during anesthetized and awake mapping. (B–F) Examples of the comparison

between each of five templates and the single-trial response to /bad tad gad dad/. The classifier detects that a sound has occurred when the NM

reaches a value of 1, and the identity of the sound is the template with the highest NM value at that time point. Guesses are marked in the figure by

asterisks.

Fig. 9. Cortical speech-evoked activity patterns were robust up to 10 sps. Neural responses were averaged for each site and plotted organized by

characteristic frequency. Each consonant speech sound (by row) evoked a unique pattern of activity at 2 sps (first column). The response of these

patterns was robust through the 10-sps presentation rate. At 20 sps, responses were visibly weaker and were less distinct that at the previous

presentation rates. This drastic change in neural responses may be the reason that both behavior and classifier performance fall at this speed.
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Fig. 10. Average performance of rats and the classifier on the

speech sequence task. (A) Average classifier performance at each of

the six presentation rates. Performance was calculated by counting

the number of correct responses per sequence over 20 repeats of

each sequence. This process was repeated 30 times with random

groups of sites and average performance across the 30 runs is

plotted. The classifier generated the expected performance curve for

the behavioral task in rats. (B) Average behavioral performance by

rats was measured by hits-false alarms for each of six presentation

rates tested. Performance was plotted across a minimum of 10

sessions per rat of the testing stage in which all presentation rates

were randomly interleaved in blocks of 20 trials per block (see

Experimental procedures). Performance was robust until 10 and

20 sps (compared to performance at 2 sps; ⁄p< 0.01). The task was

almost impossible for rats when sounds were presented at 20 sps

(⁄⁄p< 0.001 as compared to 2 sps). Behavioral ability of rats was not

significantly different from classifier performance (unpaired t-tests,
p= 0.65, p= 0.78, p= 0.35, p= 0.58, p= 0.16, and p= 0.14 at

each presentation rate, respectively).
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temporal limits of the classifier. Neural activity patterns

were strong and distinguishable at rates up to 10 sps

(Fig. 9), and performance of the classifier was similarly

robust up until 10 sps, and then performed significantly

worse at 20 sps than at 2 sps (Fig. 10A). The significant

reduction in neural firing strength at 20 sps as well as

the impaired performance of the classifier at this speech

mimics the temporal thresholds seen in human

participants on rapid speech discrimination tasks

(Ahissar et al., 2001; Poldrack et al., 2001; Ghitza and

Greenberg, 2009). This result suggests that as long as

neural response patterns are unique and are

distinguishable from spontaneous firing, A1 activity can

be used to locate and identify speech sounds in a

sequence.

Since our classifier was able to accurately mimic

behavioral ability on a two-alternative forced-choice

task, we hypothesized that our real time classifier could

predict rats’ ability to identify a target speech sound in a

stream of speech distracters. Rats were trained to

initiate trials by engaging an IR nose poke, and to

withdraw from the nose poke upon presentation of the

target sound /dad/ (within a 500-ms hit window) and to

withhold responding during preceding random

sequences of four distracter sounds (Fig. 4; /bad/, /gad/,

/sad/, and /tad/). This task required a longer learning

period than previous studies of speech sound

discrimination. Our rats required 38.2 ± 1.7 days to

reach performance of d0 P 1.5 compared to

17.4 ± 2.3 days for isolated speech tasks (Engineer

et al., 2008). Behavioral discrimination accuracy
gradually decreased as the presentation rate was

increased.

Performance remained well above chance (0%) up to

10 sps (2 sps: 69.2 ± 5.2%, 4 sps: 62.4 ± 8.7%, 5 sps:

56.5 ± 10.9%, 6.67 sps: 59.0 ± 12.7%, 10 sps: 46.1 ±

9.2%), though performance at this rate was significantly

worse than performance at 2 sps (46.1 ± 9.2% vs.

69.2 ± 5.2%, 10 sps vs. 2 sps respectively; paired t-test;

p= 0.007). Poor performance at 20 sps (6.1 ± 2.0%

correct) was consistent with performance in humans at

the same rate (Ahissar et al., 2001; Poldrack et al.,

2001; Ghitza and Greenberg, 2009) (Fig. 10B). At this

speed, not only did hit rate decrease (paired t-test of

18.8 ± 7.1% vs. 47.7 ± 3.6% at 2 sps; p< 0.01), but

the number of early responses (aborts) significantly

increased (paired t-tests of 35.1 ± 5.7% vs. 16.3 ± 3.8%

misses at 2 sps; p<0.01 and paired t-tests of

33.6 ± 3.8% vs. 17.9 ± 2.3% aborts at 2 sps; p= 0.01;

Fig. 11). At presentation rates faster than 2 sps, false

alarm rates did not differ between distracters (two-way

analysis of variance; F(5,3) = 2.11; p= 0.07), which

suggests that compression does not drastically alter

perception of distracter sounds. Overall, classifier

performance was not significantly different from rat

behavioral performance (unpaired t-tests at each

presentation rate; 2 sps; p= 0.65, 4 sps; p= 0.78,

5 sps; p= 0.35, 6.67 sps; p= 0.58, 10 sps; p= 0.16,

and 20 sps; p= 0.14). These results show that rats are

able to accurately identify speech sounds imbedded in a

rapid stream and our classifier was able to predict this

performance function.

Spatial smoothing compensates for un-correlated
neural activity

Our data were recorded in groups of four channels at a

time. It was possible that the de-correlation caused by

grouping channels that were not recorded

simultaneously would negatively impact the classifier’s

ability to predict behavioral performance. We calculated

the correlation between action potential patterns across

different pairs of electrodes for each recording sweep.

The average correlation coefficient between pairs of

simultaneously recorded channels (r= 0.15) was

significantly different from the correlation between pairs

of channels in different penetrations (r= 0.05;

p< 0.01). To test whether this lower correlation across

channels affected the classifier, we added action

potentials to the dataset of 196 sites to mimic the

correlation observed when sites were recorded

simultaneously (see Experimental procedures).

After this process, the average correlation coefficient

across pairs of sites was no longer significantly different

from the correlation between pairs of simultaneously

recorded sites (r= 0.13 after adjustment; t-test vs. pairs
of simultaneously recorded sites, p= 0.53). The re-

correlated neural data did not require as much spatial

smoothing as the un-altered population to achieve the

same accuracy (unpaired t-test comparing classifier

performance using re-correlated data with the un-altered

population; p= 0.11). Using a Gaussian filter with a

half-width of 2% of the total number of sites, the re-



Fig. 11. Behavioral performance was robust at speeds slower than 20 sps. Performance breakdown at each of the six speeds we tested (H = hits,

C = correct rejections, M=misses, F = false alarms, A = aborts/early responses). At speeds up to and including 10 sps, the majority of

responses were to the target sound, with low rates of misses, false alarms, and aborts (or responses before the target was presented). At the fastest

speed (20 sps), hit rate significantly decreased (p< 0.01) and both miss and abort rates significantly increased (p< 0.01 and p= 0.01

respectively. This pattern of response suggests that rats are still able to distinguish speech sounds until the presentation rate exceeds 10 sps. This

is the same speed threshold commonly observed in human participants.

Fig. 12. A simulation of correlated neural data is able to predict rat

behavior with less smoothing than the un-altered population. To

evaluate the effect of different recording sessions on the performance

of the classifier, we altered our dataset to mimic the correlated firing

across recording sites acquired simultaneously (see Experimental

procedures). The re-correlated data were able to predict rat behavior

on the sequence task with less spatial smoothing than was required in

the un-altered population (Gaussian filter with a half-width of 2% of

the total number of sites; R2 = 0.67, p= 0.04). The performance of

the re-correlated data is not significantly different than the perfor-

mance of the un-altered population (unpaired t-test, p= 0.11).
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correlated data were highly accurate at locating and

identifying the target sound /dad/ in a sequence and

was significantly correlated with behavioral ability of rats

on this task (R2 = 0.67, p= 0.04; Fig. 12). The re-

correlated data were not significantly different from the

un-altered population in five of the six presentation rates

(unpaired t-tests between un-altered data and re-

correlated data; 2 sps; p= 0.04, 4 sps; p= 0.23, 5 sps;
p= 0.24, 6.67 sps; p= 0.49, 10 sps; p= 0.35, and

20 sps; p= 0.38). This result suggests that the

technique of smoothing on the spatial dimension may

serve as an accurate method of compensation for the

de-correlation that occurs when recording sites are not

acquired simultaneously.
The classifier is as accurate using awake neural data

It was possible that our classifier would perform differently

using awake recordings, due to differences in

spontaneous activity or attention effects (Steinmetz

et al., 2000; Treue, 2001). A different group of rats were

implanted with a chronic array of 16 micro-electrodes.

After recovery, we presented four speech sound

sequences during a single passive recording session

and were able to obtain a total of 123 reliable recording

sites. Awake recordings had a higher spontaneous firing

rate than anesthetized recordings (64.2 ± 1.8 Hz

compared to 23.4 ± 1 Hz in the anesthetized

preparation, unpaired t-test; p< 0.001; Fig. 13A) but

this did not change the effectiveness of the classifier.

After spatial smoothing (half-width of 15% of the total

number of sites; Fig. 13B), the classifier performed at

an average of 36.0 ± 6.6% using random groups of 100

sites (since we did not have enough sites to run in

groups of 150). This accuracy mimics what the

anesthetized classifier was able to accomplish with

groups of 100 sites (Fig. 6A). The result that awake

neural activity can perform the neural discrimination task

with comparable accuracy to anesthetized recordings is



Fig. 13. The classifier can use awake neural data to locate and identify speech sounds in sequences. (A) Raw neural recordings from 123 sites in

passively-listening awake rats. Awake data had significantly higher spontaneous firing rates compared to anesthetized (64.2 ± 1.8 Hz compared to

23.4 ± 1 Hz in the anesthetized preparation, unpaired t-test; p< 0.001). (B) After spatial smoothing with the same Gaussian filter used with

anesthetized recordings, evoked activity was averaged and the classifier was able to locate and identify each speech sound in the sequence.
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similar to what we saw using our earlier classifier

(Engineer et al., 2008). This result suggests that our

classifier may be able to predict performance in real

time using neural recordings acquired from awake and

behaving animals.
DISCUSSION

Calculation of decision thresholds

In our study, we designed a classifier that sweeps neural

activity for a pattern of activity evoked by a speech sound

and decides which sound caused that activity using

predetermined decision thresholds. Our results support

the idea that A1 contains information sufficient to

perform speech sound identification (Steinschneider

et al., 1995; Engineer et al., 2008; Bizley et al., 2010;

Shetake et al., 2011; Perez et al., 2012; Ranasinghe

et al., 2012b). This information may also be present in

other cortical areas, as previous studies showed that

removing A1 does not impair the ability of animals to

perform speech sound discrimination tasks or to learn

new speech sound targets (Floody et al., 2010; Porter

et al., 2011). While the information needed to

accomplish this task exists in A1, we recently showed

that it may also be encoded in other auditory fields by

parallel pathways from the thalamus (Centanni et al.,

2013b).

In the current study, we did not find any difference

in the ability of the classifier to locate the target

stimulus in trained animals compared to recordings

from naı̈ve animals. This result suggests that training

did not enhance the representation of the target

sound in A1, though this target-specific effect may be

present in other brain regions. For example, when

monkeys were asked to identify whether two tactile

stimuli were the same or different, primary

somatosensory cortex encoded only the current

stimulus, while secondary somatosensory cortex was
already beginning to compare the two stimuli (Romo

and Salinas, 2003). It is likely that higher level brain

regions contain integrator neurons that recognize

patterns of activity occurring in lower level areas.

Neural networks designed to mimic sensory neurons

can be trained to integrate basic sensory information

into categorical decisions (Buonomano and Merzenich,

1995; Mazurek et al., 2003). Single neurons recorded

in premotor cortex of monkeys can also predict the

intended motor sequence when a maximum-likelihood

decoder analyzes the firing rate (Shanechi et al.,

2012). Our classifier does not propose a mechanism

for how this threshold is created or where in the brain

it is stored, but it is the first to show that a classifier

can use A1 activity to predict the location and identity

of speech stimuli without being forced to choose

between a set of options. As in behavioral tasks, if

the decision threshold is not met, the classifier is not

required to guess. In addition, if multiple thresholds

are met, our classifier is designed to choose the

template which is most like the single trial.

Our study does not address the effect of behavioral

feedback on the creation or maintenance of this

threshold, as our thresholds did not change during

testing. It is likely that the brain adapts to real time

feedback during testing. If thresholds never changed,

the brain would be inept at tasks of generalization.

For example, the same word spoken with small

changes in pitch, pronunciation and/or context may

cause the brain to categorize these as two different

words. It is well known that synapses change as a

result of real time feedback (Malenka and Nicoll,

1993; Buonomano and Merzenich, 1998; Cohen-Cory,

2002; Malinow and Malenka, 2002), but the question

of how the brain monitors these changes and how

drastic the adjustments are remains to be answered.

A classifier that could adjust its thresholds in relation

to real time feedback would provide a more
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biologically accurate model and may be able to explain

models of learning impairments.

Evaluation of the data set and classifier

The data reported in our study were acquired from many

animals and analyzed post hoc. In the anesthetized

recordings, four electrodes were recorded

simultaneously. In the awake preparation, up to seven

electrodes were viable at any given time point. Our

result that a simulation of correlated data is able to

predict behavioral ability suggests that this classifier

would likely perform well if provided over 150

simultaneously recorded sites. We also observed that

re-correlated data do not need as much spatial

smoothing as de-correlated data. A small amount of

integration is likely present in the brain from one neural

population to another, so the amount of smoothing still

required after re-correlation is biologically plausible

(Giraud et al., 2000; Langers et al., 2003, 2007). We

suggest that greater amounts of spatial smoothing may

therefore compensate for un-correlated data. This

hypothesis will require further study using large numbers

of simultaneously recorded sites.

The classifier used a fixed window (80 ms) to scan a

single trial of neural activity for evoked responses.

There is sufficient information present in this window for

consonant identification to take place (Miller and Nicely,

1955; Kuhl and Miller, 1975; Engineer et al., 2008).

However, it is likely that rats and humans also use

information occurring in larger integration windows,

especially in difficult hearing environments (Shetake

et al., 2011). Our classifier attempted to account for this

by analyzing the NM values within 4 ms of the initial

guess. This allowed the classifier some flexibility to wait

until all similar templates were considered and then

make a decision using the strongest signal. This time

period of flexibility is biologically plausible as it is well

within the minimum amount of time in which the brain

can make a decision (Stanford et al., 2010).

We also show in the current study that our classifier

fell to chance performance when 10-ms temporal bins

were used. This finding is in contrast to recent work

showing that this bin size is optimal for single cell

discrimination (Wang et al., 1995; Schnupp et al., 2006).

This difference may be due to the influence of

neighboring neurons in the current study. Our study

used multi-unit recordings as the data set for testing the

classifier, and the influence of nearby neurons with

slightly varying response patterns is likely the cause of

the discrepancy between our test of 10-ms bins and

other recent work in single units. An additional test of

this classifier using many single-unit responses will be

critical in determining the effect of multi-unit sites on the

efficacy of 10–50-ms temporal bin sizes. In addition to

the differences in single unit vs. multi-unit recordings,

future work should also investigate the differences in

neural activity recorded from difference cortical layers.

In the current study, we recorded from layers 4/5 of rat

auditory cortex. These are input layers and are a

common choice for auditory recording studies (Winer

et al., 2005; Christianson et al., 2011; Centanni et al.,
2013b). A recent study showed that superficial layers in

the rodent often respond with fewer spikes per stimulus

and show evidence of larger post-activation suppression

(Christianson et al., 2011). Therefore, it is possible that

responses in different cortical layers may encode

information in a different way than the activity patterns

shown here and our classifier should be tested using

datasets from different cortical layers.

Our auditory cortex recordings were acquired

exclusively in the right hemisphere of rats. There has

been considerable discussion in the recent literature

about the possible lateralization of rodent auditory

cortex and the nature of possible specializations that

result from such organization. For example, recent work

has shown that there are functional and specific

differences in frequency-modulated (FM) discrimination

directly related to which hemisphere is lesioned in

rodents (Wetzel et al., 2008). Left hemisphere auditory

areas have also been shown to be important in pattern

discrimination in the cat (Lomber and Malhotra, 2008). It

is possible that A1 responses in the left auditory cortex

may yield additional insight into whether any functional

specialization occurs in a particular hemisphere of the

rat auditory cortex. In addition, neural activity patterns

from other auditory areas should be tested, as there are

differences in the neural encoding of temporal stimuli

across cortical regions (Lomber and Malhotra, 2008;

Centanni et al., 2013b).

Future applications for the classifier

In the current study, we demonstrate that a classifier can

locate and identify speech sound stimuli in real time using

single repeats of A1 neural activity. The ability to extract

this type of meaningful information from basic auditory

processing areas confirms that the relevant speech-

coding activity is present at a low sensory level. The

functional mechanisms behind many speech-processing

disorders are still poorly understood and our classifier

may prove to be valuable tool in answering these

questions. If, for example, neural activity from A1 is able

to accurately encode speech sounds, then a processing

deficit is likely to exist in a higher cortical area.

In addition, our classifier may prove to be a useful tool

in the early identification of speech-processing disorders.

These individuals are often impaired at speech

processing in difficult listening conditions. Individuals

with dyslexia, for example, often have difficulty

processing rapid speech sounds and speech presented

in background noise (Helenius et al., 1999; Ziegler

et al., 2009; Poelmans et al., 2012). Recent research is

elucidating the neural basis for these types of

perception impairments (Lehongre et al., 2011;

Kovelman et al., 2012; Centanni et al., 2013a; Hornickel

and Kraus, 2013), but early detection of these disorders

has yet to be optimized. The biologically plausible

smoothing parameters used in our study have the

potential to improve our current understanding of the

mechanisms by which sounds are encoded in A1 and

are subsequently passed to higher cortical areas. An

understanding of this knowledge may help us better

identify when this system is performing inadequately
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and may help in the development of early identification

and treatment of speech-processing disorders.
CONCLUSION

In the current study, we developed a classifier that can

locate the onset and identify consonant speech sounds

using population neural data acquired from A1. Our

classifier successfully predicted the ability of rats to

identify a target CVC speech sound in a continuous

stream of distracter CVC sounds at speeds up to

10 sps, which is comparable to human performance.

The classifier was just as accurate when using data

recorded from awake rats. We also demonstrate that

smoothing neural data along the spatial dimension may

compensate for the de-correlation that occurs when

acquiring neural data in several separate groups. These

results demonstrate that the neural activity in A1 can be

used to quickly and accurately identify consonant

speech sounds with accuracy that mimics performance.
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