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ABSTRACT 

 How is temporal information processed in human visual cortex? There is intense debate 

as to how sustained and transient temporal channels contribute to visual processing beyond V1. 

Using fMRI, we measured cortical responses to time-varying stimuli, then implemented a novel 

2 temporal-channel encoding model to estimate the contributions of each channel. The model 

predicts cortical responses to time-varying stimuli from milliseconds to seconds and reveals that 

(i) lateral occipito-temporal regions and peripheral early visual cortex are dominated by transient 

responses, and (ii) ventral occipito-temporal regions and central early visual cortex are not only 

driven by both channels, but that transient responses exceed the sustained. These findings 

resolve an outstanding debate and elucidate temporal processing in human visual cortex. 

Importantly, this approach has vast implications because it can be applied with fMRI to decipher 

neural computations in millisecond resolution in any part of the brain.  
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 How does the visual system process the temporal aspects of the visual input? In the 

retina1 and LGN2-4 temporal processing is thought to be mediated predominately by a 

magnocellular (M) pathway distinguished by its large transient responses3, 4 and a parvocelluar 

(P) pathway which has larger sustained responses than the M pathway3, 4 (in addition to a 

smaller koniocelluar5 pathway). While M and P pathways remain segregated up to striate cortex 

(V1), there is intense debate as to how these pathways contribute to visual processing in 

extrastriate cortex. The prevailing view suggests that the dorsal stream, particularly MT, is M 

dominated6-8, and the ventral stream, particularly V4, is P dominated9-11. However, an opposing 

view suggests that these pathways are not segregated in extrastriate cortex5, 8 as there is 

evidence for M and P contributions to both V45, 9 and MT12, 13. 

 Since M and P pathways are associated with transient and sustained responses, 

respectively, these theories make predictions regarding temporal processing in human visual 

cortex. The prevailing view predicts that human MT complex (hMT+) will have large transient but 

small sustained responses, and conversely human V4 (hV4) will have large sustained but small 

transient responses. However, the opposing view predicts substantial transient and sustained 

responses in both hMT+ and hV4. While these predictions are derived from studies of the 

macaque brain, whether the same predictions can be made to the human brain is uncertain 

because the organization of human visual cortex differs from the macaque in three notable 

ways: (1) V4 and MT neighbor in the macaque brain, but hV4 and hMT+ are separated by ~3 

cm in the human brain, (2) whether macaque V4 and hV4 are homologous is subject to 

debate14-17, and (3) the human brain contains several additional visual regions neighboring hV4 

and hMT+ that are not found in the macaque (VO-1/VO-2 and LO-1/LO-2, respectively).	Thus, 

generating a complete model of temporal processing in human visual cortex necessitates 

measurements in humans.  
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 Understanding temporal processing in human visual cortex has seen little progress for 

two main reasons. First, the temporal resolution of fMRI is in the order of seconds18, an order of 

magnitude longer than the timescale of neural processing, which is in the tens to hundreds of 

milliseconds range. Second, while fMRI responses are largely linear for long stimulus 

presentations19, 20, they exhibit marked nonlinearities for short and transient stimuli19-24. Since 

the standard linear model for fMRI19, 25 is inadequate for modeling responses to such stimuli and 

fMRI is slow, the temporal processing characteristics of human visual cortex remain elusive.  

 If the observed nonlinearities are of neural (rather than BOLD) origin, a new encoding 

approach applied to fMRI26-29, which uses computational models to predict neural responses 

(even if they are nonlinear), could surmount these issues. Different than the standard method, 

which predicts fMRI signals directly from the stimulus, the encoding approach first models 

neural responses to the stimulus, then from the predicted neural responses calculates fMRI 

responses. The encoding approach26-29 has been influential for two reasons: (i) it provided an 

important insight that accurately modeling neural responses at a sub-voxel resolution better 

predicts fMRI responses at the voxel resolution, and (ii) it advanced understanding of neural 

mechanisms by building explicit, quantitative models of neural computations. 

 Here we sought to leverage the encoding approach to characterize temporal processing 

in human visual cortex. Thus, we built a temporal encoding model of neural responses to time-

varying visual stimuli in millisecond resolution and used this model to predict fMRI responses in 

second resolution. The model is based on estimation of the transient and sustained channels’ 

impulse response functions from measurements in macaque V130-32 and psychophysics in 

humans33-36. To determine temporal processing in human visual cortex we implemented three 

experiments aimed to measure fMRI responses to time-varying visual stimuli that were either 

sustained (1 continuous image per trial, durations ranging from 2 s to 30 s; Fig. 1, Experiment 
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1), transient (30 flashed, 33 ms long, images per trial, inter-stimulus intervals ranging from 33–

967 ms; Fig. 1, Experiment 2), or contained both transient and sustained components (30 

continuous images per trial, durations ranging from 67–1000 ms per image; Fig. 1, Experiment 

3). We first determined if millisecond temporal variations in visual stimuli generate substantial 

modulations of fMRI responses in visual cortex. Then we used Experiments 1 and 2 to estimate 

the 2 temporal-channel encoding model parameters and tested how well the model predicts 

fMRI responses to stimuli that vary in their temporal properties from milliseconds to seconds in 

new data from Experiment 3. Once we established the model’s validity, we derived the 

contributions of sustained and transient channels to neural responses across striate and 

extrastriate visual cortex to test the competing experimental hypotheses.  

 

 
Figure 1: Measuring brain responses to combinations of sustained and transient visual stimuli. (a) Participants fixated 
centrally and viewed phase-scrambled gray-level images that were presented in trials of different durations, interleaved with 12 s 
periods of a blank screen. The same fixation task (detecting change in fixation color) was used in all three experiments. Experiment 
1: a single phase scrambled image was shown for the duration of a trial. Experiment 2: 30 briefly presented images (33 ms each), 
each followed by a blank screen, were presented in each trial. As the trial duration lengthens, the gap between images increases, 
causing the fraction of the trial containing visual stimulation to decrease. Experiment 3: 30 continuous images (with no gaps 
between consecutive stimuli) were presented in each trial. As the block duration lengthens, the duration of each image progressively 
increases. (b) The same trial durations (2, 4, 8, 15 or 30 s) were utilized across all three experiments while the rate and duration of 
visual presentation varied between experiments. Corresponding trials in Experiments 1 and 3 have the same overall duration of 
stimulation but different numbers of stimuli, whereas trials in Experiments 2 and 3 have the same number of stimuli but different 
durations of stimulation. Top: stimulation durations for example trial in each experiment; Bottom: zoom on the 2 s and 4 s trials.  
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RESULTS 

Do Millisecond Temporal Variations in the Visual Stimulus Modulate V1 Responses? 

 To test the feasibility of this approach, we first examined V1 responses during the three 

experiments. Predicted fMRI responses from the standard model depend only on the type and 

duration of stimuli. Thus, the standard model predicts longer responses for longer trials and 

identical responses in Experiments 1 and 3 (Fig. 2a, blue and green), which use the same 

visual stimuli and trial durations and just vary by the number of images per trial (1 vs. 30, 

respectively). Furthermore, the model predicts that the amplitude of responses in Experiments 1 

and 3 will increase from 2–8 s trials and will remain largely the same for longer trials. While the 

standard model predicts the same response durations in Experiment 2, it predicts substantially 

lower response amplitudes in Experiment 2 than Experiments 1 and 3 because the transient 

visual stimuli are presented for only a fraction of each trial. Furthermore, the model predicts a 

progressive decrease in response amplitude during Experiment 2 from 2–30 s trials as the 

fraction of the trial in which visual stimuli are presented decreases (from 1/2 to 1/30 of the trial, 

Fig. 2a, red).  

 
Figure 2: V1 responses to transient 
stimuli differ from the predictions of the 
standard model. (a) The standard model 
predicts the same response in trials of the 
same duration across Experiment 1 (blue) 
and Experiment 3 (green), since both 
present stimuli continuously for the same 
total duration in each trial. However, 
responses in Experiment 2 (red) are 
predicted to be much lower because 
stimuli are spaced apart and are only 
presented for a fraction of each trial 
duration. (b) The mean V1 response in 
Experiments 1–3 averaged across 12 
participants. Each curve is data from a 
different experiment (see legend). Shaded 
regions around the curves indicate ± 1 
standard error of the mean (SEM) across 
12 participants. In both (a) and (b) the 
onsets and lengths of the trials are 
illustrated as thick black bars below each 
graph, and curves extend 2 s before the 
onset and 12 s after the offset each trial.  
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 While V1 responses to sustained visual stimulation in Experiment 1 largely followed the 

predictions of the standard model (Fig. 2a, blue), responses in Experiments 2 and 3 deviated 

from the standard model’s predictions. First, responses in Experiment 3 (Fig. 2b, green) were 

higher than responses in Experiment 1 for all trial durations. Second, responses to transient 

stimuli in Experiment 2 (Fig. 2b, red) were substantially higher than predicted by the standard 

model. In fact, V1 responses during 2–8 s trials of Experiment 2 were equal or higher than those 

of Experiment 1, even though the cumulative duration of stimulation across images in 

Experiment 2 was a fraction of the duration of stimulation in Experiment 1. Third, different than 

the predictions of the standard model, response amplitudes in Experiment 2 did not 

systematically decline with trial duration but instead peaked for the 4 s trials.  

 These data demonstrate that (i) varying the temporal characteristics of visual 

presentation in the millisecond range has profound effects on V1 fMRI responses, and (ii) the 

standard model is inadequate in predicting measured fMRI responses for these stimuli, in 

agreement with prior data. Furthermore, the higher responses in Experiment 3 (which has both 

sustained and transient visual stimulation) compared to Experiments 1 and 2 (which have either 

sustained or transient stimuli, respectively) suggest that both transient and sustained 

components of the visual input contribute to the fMRI signals, consistent with our hypothesis.  

 

An Encoding Model for Temporal Processing in Visual Cortex 

 To accurately predict fMRI responses in all three experiments, we built a temporal 

encoding model of neural responses in millisecond resolution and used this model to predict 

fMRI responses in second resolution (Fig. 3). Our model consists of 2 neural temporal 

channels, each of which can be characterized by a linear systems approach using a temporal 

impulse response function30-32, 34-36 (IRF). The sustained channel is characterized by a 
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monophasic IRF (Fig. 3b, blue channel IRF) peaking at around 40 ms and lasting 100–150 ms; 

convolving this channel with a visual stimulus will produce a sustained neural response for the 

duration of the stimulus. The transient channel is characterized by a biphasic IRF, akin to a 

derivative function, with the positive part peaking at around 35 ms and the negative part peaking 

at around 70 ms (Fig. 3b, red channel IRF). A squaring nonlinearity is added, as both stimulus 

onset and offset lead to increased neural firing and consequently increased metabolic 

demands36, 37. Thus, convolving the visual stimulus with this transient IRF will produce a positive 

neural response when there is an onset or offset of the visual stimulus but zero response in 

between when the stimulus is presented for durations longer than the duration of the IRF. The 

predicted fMRI response is generated by convolving the output of each neural channel with the 

HRF and summing the responses of the two temporal channels (Fig. 3c). 

 
Figure 3: The 2 temporal-channel model. (a) Transitions between stimulus and baseline screens are coded as a step function 
representing when a stimulus was on vs. off with millisecond temporal resolution. In the example illustrated here, each stimulus is 
presented for 33 ms and followed by a 100 ms blank screen. (b) Separate neural responses for the sustained (blue) and transient 
(red) channels are modeled by convolving the stimulus vector with impulse response functions (IRFs) for the sustained and transient 
channels, respectively, estimated from human psychophysics. A squaring nonlinearity is applied in the transient channel to rectify 
offset deflections (see Online Methods). (c) Sustained and transient fMRI response predictors are generated by convolving each 
channel’s neural responses with the hemodynamic response function (HRF) and down-sampling to match the temporal acquisition 
rate of fMRI data. The total fMRI response is the sum of the weighted sustained and transient fMRI predictors for each channel. To 
estimate the contributions (b weights) of the sustained (bS) and transient (bT) channels in V1, we fit the 2 temporal-channel model 
across data concatenated across Experiments 1 and 2. 
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Our procedure for testing the 2 temporal-channel encoding model had two stages. First, 

we estimated the contributions of the two temporal channels to fMRI signals using concatenated 

data from Experiments 1 and 2 that were designed to largely drive sustained or transient 

channels, respectively. Second, we cross-validated the model by testing how well it predicted 

data from a third experiment that had both transient and sustained visual stimulation. As a 

benchmark, we compared the performance of the 2 temporal-channel model with the standard 

model. 

 

Does a 2 Temporal-Channel Model Explain V1 fMRI Responses to Time-Varying Stimuli? 

 Comparing the predictions of the 2 temporal-channel model to V1 responses reveals 

three findings. First, the 2 temporal-channel model containing one sustained predictor (weighted 

by bS) and one transient predictor (weighted by bT) generated fMRI signals that tracked both the 

duration and amplitude of V1 responses in Experiments 1 and 2 (Fig. 4a, compare model 

prediction, black, to measured V1 data, gray). Consistent with our predictions, the sustained 

channel accounted for the majority of responses in Experiment 1 (Fig. 4a, top row, blue), while 

the transient channel contributed the bulk of the response in Experiment 2 (Fig. 4a, bottom row, 

red).  

Second, the 2 temporal-channel model explains V1 responses to both Experiments 1 

and 2, but the standard model fails to explain responses to transient stimuli in Experiment 2. 

That is, the 2 temporal-channel model fit to both experiments, explained 62% ± 3% (mean ± 1 

standard error of the mean across participants, SEM) of V1 response variance in Experiment 1 

(Fig. 4d) and 51% ± 3% of the variance in Experiment 2 (Fig. 4e). In contrast, the standard 

model fit to both experiments explained 61% ± 3% of the variance in Experiment 1 (Fig. 4d) but 

less than 1% ± 1% of the variance in Experiment 2 (Fig. 4e). Thus, while the standard model 
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captured V1 responses to the long stimulus presentations in the first experiment, it failed to 

capture responses to transient stimuli in the second experiment (Fig. 2a).  

 
Figure 4: Sustained and transient 
contributions to V1 fMRI responses. 
(a) Measured V1 responses in 
Experiments 1 and 2 are plotted as the 
mean (white) ± 1 standard deviation 
(gray) across 12 participants for each 
trial duration. Superimposed are the 
predictions of the 2 temporal-channel 
model fit across data from both 
experiments. Blue: sustained predictor 
weighted by bS; Red: transient predictor 
weighted by bT; Black: prediction of the 
2 temporal-channel model, which is the 
addition of the two channels. (b) 
Measured V1 responses and cross-
validated model prediction for 
Experiment 3. The sustained and 
transient predictors are respectively 
weighted with bS and bT fitted from 
Experiments 1 and 2 [see (c)]. In all 
panels, trial durations are illustrated 
below the x-axis, and curves extend 2 s 
before the onset and 12 s after the 
offset each trial. (c) The model solution 
(bS and bT) for V1 fit with the two 
temporal-channel model using data 
concatenated across Experiments 1 
and 2. (d-f) Comparison of the variance 
explained (R2) by 2 temporal-channel 
model vs. the standard model for each 
experiment. Error bars in (c–f) indicate 
± 1 SEM across participants. 

 

 

Third, the 2 temporal-channel model with bS and bT fit from Experiments 1 and 2 (Fig. 

4c) accurately predicted independent data from Experiment 3 (Fig. 4b). The sustained 

contribution (Fig. 4a-b, blue) in Experiment 3 was comparable to Experiment 1 (these 

experiments have the same total duration of stimulation per trial), and the transient contribution 

(Fig. 4a-b, red) in Experiment 3 was similar to Experiment 2 (these experiments have the same 

number of transients per trial). Since both temporal channels provided a significant contribution 

to V1 and the contributions of the two channels are additive, Experiment 3 responses were 

higher than both Experiments 1 and 2 across all trial durations. Analysis of cross-validated R2 
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showed that the 2 temporal-channel model explained 71% ± 2% of variance in Experiment 3 

(Fig. 4f) even though the channel weights were estimated from responses to independent data 

with different temporal characteristics. The cross-validated R2 of the 2 temporal-channel model 

was also significantly higher than the standard model (t11 = 5.92, p < 0.001, paired t-test), which 

only explained 63% ± 3% of response variance in Experiment 3 (Fig. 4f). In general, the two-

temporal channel model outperformed the standard model in all visual areas tested, with a 

larger improvement in subsequent areas compared to V1 (Supplementary Figs. S1, S2). Thus, 

the 2 temporal-channel model predicts fMRI responses to visual stimuli across a three-fold 

range of presentation durations ranging from tens of milliseconds to tens of seconds.  

 

Do Temporal Processing Characteristics Differ Across Intermediate Visual Areas? 

 We next examined hV4 and hMT+ responses to the time-varying visual stimuli in 

Experiments 1–3, as the competing theories make different predictions regarding the 

contributions of sustained and transient channels to these regions. hV4 and hMT+ illustrated 

distinct patterns of responses. Like V1, hV4 showed higher responses in Experiment 3 (30 

continuous images per trial) than either Experiment 1 (1 continuous image per trial) or 

Experiment 2 (30 flashed images per trial). Different from V1, hV4 exhibited equal or stronger 

responses to the brief transient visual stimuli in Experiment 2 than the sustained single images 

in Experiment 1 (Fig. 5a). Different than both V1 and hV4, hMT+ exhibited close to zero evoked 

responses for the sustained stimuli in Experiment 1 (except for onset and offset responses that 

are visible in trials of 8 s and longer, Fig. 5b). However, hMT+ showed substantial responses for 

transient stimuli in Experiment 2 that were comparable to Experiment 3, which had both 

transient and sustained stimulation. Together, these data suggest differences in temporal 

processing across hV4 and hMT+. 
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Figure 5: Differential sustained and transient 
contributions across hV4 and hMT+. (a) hV4 
and (b) hMT+ responses for Experiment 1 (blue), 
Experiment 2 (red), and Experiment 3 (green). 
Curves show mean (solid line) ± 1 SEM across 12 
participants (shaded area). Trial durations are 
indicated by the thick black lines below the x-axis, 
and curves extend 2 s before the onset and 12 s 
after the offset each trial. The model solution (bS 
and bT) for each region is plotted to as an inset 
with error bars representing ± 1 SEM across 
participants. (c) Comparison of the variance 
explained (R2) by 2 temporal-channel model vs. 
the standard model, both fit across data from 
Experiments 1 and 2. Model performance is 
quantified separately for each experiment both for 
hV4 (top) and hMT+ (bottom). Error bars indicate 
± 1 SEM across participants.  

 

Next, we quantified hV4 and hMT+ responses with the 2 temporal-channel encoding 

model. The model fits revealed that (i) in hV4 both channels contributed to responses, with the 

contribution of the transient channel about double that of the sustained channel (Fig. 5a, inset) 

and (ii) in hMT+ the transient channel substantially contributed to responses, but the sustained 

channel had close to zero contribution (Fig. 5b, inset). Across both regions, the 2 temporal-

channel model fit data from Experiment 2 better than the standard model (ts > 4.06, ps < 0.01, 

paired t-test on R2 values for each ROI) and also better predicted data from Experiment 3 than 

the standard model (ts > 4.18, ps < 0.05, paired t-test on cross-validated R2 values for each 

ROI; Fig. 5c). These results demonstrate that not only does the 2 temporal-channel model 

perform significantly better than the standard model at intermediate stages of the visual 

hierarchy, but that the contributions of transient and sustained channels differ across hV4 and 

hMT+.  

 

What Is the Topology of Sustained and Transient Channels Across Visual Cortex? 

 To complement the ROI approach, we next visualized the spatial topology of the 

sustained and transient channels across visual cortex, which enables mapping channel 

contributions at the voxel-level.  
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Examining the contribution of sustained and transient channels across ventral and lateral 

occipito-temporal cortex revealed two main findings. First, lateral occipito-temporal cortex was 

devoid of contributions from the sustained channel, but had substantial contributions from the 

transient channel (Fig. 6a). This effect was widespread and included not only voxels in hMT+, 

as predicted by the prior analysis, but also extended (i) posteriorly into portions of lateral 

occipital areas LO-1 and LO-2, and (ii) ventrally into the inferior occipital gyrus and lateral 

fusiform gyrus. Dorsal regions along the intraparietal sulcus also showed negligible sustained 

responses (Supplementary Fig. S3b). Second, in ventral occipito-temporal cortex, regions 

along the posterior collateral sulcus and medial fusiform gyrus (where hV4, VO-1, and VO-2 are 

located) showed both transient and sustained responses, with larger contributions from the 

transient than sustained channel (Fig. 6a).  

 

 
Figure 6: Differential transient and sustained contributions across ventral and lateral regions. (a) Ventrolateral view of 
occipito-temporal cortex (see inset) depicting group-averaged (N = 12) maps of the contributions of transient (left) and sustained 
(right) channels. We first estimated b weights of each channel in each voxel in each participant’s native brain space. b weight maps 
were transformed to the FreeSurfer average brain using cortex-based alignment and averaged across participants in this common 
cortical space. The resulting group maps were thresholded to exclude voxels with weak contributions (−0.1 > b > 0.1). Boundaries of 
ventral and lateral regions (black) are derived from the Wang Atlas, with hMT+ as the union of TO-1 and TO-2. (b) Contributions (b 
weights) of transient (x-axis) and sustained (y-axis) channels to each visual area as estimated by the 2 temporal-channel model. 
Marker size spans ± 1 SEM across 12 participants in each dimension and b weights were solved by fitting the 2 temporal-channel 
using data concatenated across Experiments 1 and 2.  
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 We quantified the mean contributions of transient and sustained channels across visual 

areas spanning occipito-temporal cortex. Our results showed differences in the contributions of 

sustained and transient channels across early visual cortex (V1–V3), ventral occipito-temporal 

cortex (hV4, VO-1, and VO-2), and lateral occipito-temporal cortex (LO-1, LO-2, and hMT+; Fig. 

6b, significant temporal-channel by cluster interaction, F2, 22 = 13.16, p < 0.001, two-way 

ANOVA on b weights with factors of temporal-channel [sustained/transient] and visual cluster 

[early/ventral/lateral]). From V1 to higher-order areas, there was a larger drop in the contribution 

of the sustained channel than the transient channel (Fig. 6b). Nevertheless, there were 

significant differences among clusters: in ventral areas both sustained and transient channels 

contributed to responses, but in lateral areas responses were dominated by the transient 

channel. 

 

 
Figure 7: Differential transient and sustained contributions across central and peripheral eccentricities. (a) Medial cortical 
surface zoomed on the occipital lobe (see inset) depicting group-averaged (N = 12) maps of the contributions of transient (left) and 
sustained (right) channels. We first estimated b weights of each channel in each voxel in each participant’s native brain space. b 
weight maps were transformed to the FreeSurfer average brain using cortex-based alignment and averaged across participants in 
this common cortical space. The resulting group maps were thresholded to exclude voxels with weak contributions (−0.1 > b > 0.1). 
Regional boundaries (black) and eccentricity bands (white) of early visual areas are derived from the Benson Atlas. (b) 
Contributions of transient (x-axis) and sustained (y-axis) channels across eccentricities along the horizontal representation in V1 
(grays) and V2/V3 (blues) as estimated by the 2 temporal-channel model. Eccentricities range from 5° (lightest markers) to 40° 
(darkest markers). Marker size spans ± 1 SEM across 12 participants in each dimension and b weights were solved by fitting the 2 
temporal-channel using data concatenated across Experiments 1 and 2.  
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The spatial topology of sustained and transient channels also revealed differences in 

temporal processing within regions. Specifically, in early visual cortex (V1–V3) the sustained 

channel was robust in eccentricities < 20°, but declined in more peripheral eccentricities (Fig. 

7a, right). In contrast, the transient channel contributed to responses across a larger range of 

eccentricities that extend further into the periphery (> 20°; Fig. 7a, left). We quantified these 

effects by measuring the contributions of the 2 temporal-channels across eccentricities using 

uniformly-sized disc ROIs defined along the horizontal meridian representations in V1 and 

V2/V3 (Fig. 7b). This quantification showed that in early visual areas the magnitude of the 

sustained channel declined more rapidly with eccentricity than the transient channel, to the 

extent that at eccentricities of 40° there still was a 0.90 ± 0.17% transient response but less than 

0.26 ± 0.07% of a sustained response (Fig. 7b). Further, the decline of the sustained channel 

with eccentricity occurred more rapidly in V2/V3 than V1. Together, we find a differential 

contribution of transient and sustained channels across eccentricities and areas (significant 

three-way interaction of temporal channel [sustained or transient], visual area [V1 or V2/V3], 

and eccentricity [5°, 10°, 20°, or 40°], F3, 33 = 3.18, p < 0.05, three-way ANOVA on the b 

weights).  

 

DISCUSSION 

 Our results show that a 2 temporal-channel model of neural responses, containing 

sustained and transient channels, is a parsimonious encoding model that predicts fMRI 

responses in human visual cortex to visual stimuli across a broad range of durations, from tens 

of milliseconds to tens of seconds. Critically, our data address the ongoing debate regarding the 

contribution of sustained and transient channels in extrastriate cortex. Consistent with the 

prevailing view2, 6, 7, we find that the transient channel dominates hMT+ responses and 
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peripheral eccentricity representations of V136. Importantly, we show for the first time that this 

temporal processing characteristic extends to human lateral occipito-temporal cortex as well as 

peripheral eccentricity representations of V2 and V3. In contrast to the prevailing view, we find 

that both sustained and transient channels drive responses not only in hV4 but also ventral 

occipito-temporal regions VO-1 and VO-2, with a surprisingly larger contribution of the transient 

than sustained channel. This	finding	argues	against	the	view	that	the	ventral	stream	primarily	

codes	static	visual	 information	and	suggests	a	rethinking	of	the	role	of	transient	processing	in	

the	visual	system.	 

 

Differential Transient and Sustained Responses Across Visual Cortex  

 Our research fills a large gap in knowledge regarding temporal processing in human 

visual cortex by showing that (i) the 2 temporal-channel model is applicable to at least 10 

additional visuals areas beyond V130-32, 36, 38, and (ii) temporal processing is a key functional 

attribute that differentiates visual areas.  

 Our observation that hMT+ responses to sustained stimuli are close to zero is consistent 

with the prevailing view that (i) hMT+ is involved in processing visual dynamics rather than static 

information, and that (ii) inputs to hMT+ are M dominated7. Notably, we found that neighboring 

regions, LO-1 and LO-2, also have close to zero sustained responses. This finding is interesting 

because LO-2, which is thought to be involved in visual processing of objects39, 40 and 

bodyparts41, shows more robust responses to rapidly presented stimuli compared to nearby 

category-selective regions42. The present data suggest that this characteristic may be an 

outcome of a dominant transient channel – a hypothesis that can be tested in future research.  

 Inconsistent with the prevailing view, we found that hV4 showed not only sustained 

responses as expected8, 10, 24, 43, but also large transient responses. While this observation is 
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consistent with reports that macaque V4 receives both P and M inputs5, 9, it is unexpected that 

the transient contributions to hV4 exceed the sustained contributions. Further, unlike the 

macaque brain, where portions of V4 are adjacent to MT, hV4 is ~3 cm away from hMT+, 

indicating that this finding cannot be explained by the proximity of these two regions. While the 

sustained channel is often associated with coding static visual input and the transient channel 

with coding visual dynamics10, 11, 44, visual transients can also indicate changes to the content of 

the visual input. Indeed, in our experiments, transients occurred when stimuli changed (i.e., 

when a new image was shown or an image was replaced by a uniform gray screen). Since the 

function of the ventral stream is to derive the content of the visual input, the	fast	transient	visual	

processing	 we	 observe	 in	 ventral	 stream	 regions	 may	 enable	 rapid	 processing	 of	 visual	

changes45,	which in turn, may foster detection of novel stimuli and rapid extraction of the gist of 

the visual scene.  

 It is interesting that temporal processing in lateral occipito-temporal regions, like that of 

far peripheral eccentricities (> 20°) in early visual cortex, was dominated by the transient 

channel, and temporal processing in ventral occipito-temporal regions, like lower eccentricities 

in early visual cortex, showed a dual channel contribution. These functional characteristics may 

be anatomically supported by white matter connections from peripheral representations of early 

visual areas to MT and nearby regions46 that are separate from white matter connections from 

central representations of early visual cortex to ventral occipito-temporal regions47. Furthermore, 

the diminished sustained responses in the periphery of early visual cortex is consistent with 

prior findings showing reduced P inputs48 and diminished sustained luminance responses36 in 

peripheral compared to central V1, as well as faster perception in the periphery49.  
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Implications for Modeling fMRI Signals: Millisecond Timing Matters 

 Our data have important implications regarding modeling fMRI signals and 

understanding temporal processing in the human brain because they show that (i) varying the 

temporal characteristics of the visual stimulus in the millisecond range has observable effects 

on fMRI responses in the second range, and (ii) by considering the contribution of a transient 

neural channel, the encoding model can account for nonlinearities in fMRI responses for rapid 

and short visual stimuli19-21, 23, 50.  

 Our data extend the original linear model of fMRI signals19, 25 by showing the importance 

of modeling the temporal properties of neural responses at millisecond resolution to accurately 

predict fMRI signals. In their original study, Boynton et al.19 noted consistent deviations from the 

linear (standard) model in short durations (3–6 s) in which the model underestimated fMRI 

signals. These nonlinearities are exacerbated in experiments using even shorter stimuli (1/4 to 

2 s21, 23, 50). Boynton and colleagues suggested that neural adaptation or transient responses 

may explain deviations from linearity. We favor the interpretation that transient responses 

account for nonlinearities for two reasons: (i) Taking into account the neural transient channel 

resolves this nonlinearity and can predict not only our measurements but also prior data 

showing nonlinearities23 (Supplementary Fig. S4). (ii) Adaptation would have resulted in 

declining responses during long trials of continuous presentation of a single stimulus45. 

However, we observed negligible adaptation in striate (e.g. V1) and extrastriate (e.g. hV4) areas 

even during the 30 s single continuous image trials.  

  It is worthwhile noting that while the 2 temporal-channel model provides a significant 

improvement in modeling fMRI signals, our model does not explain the entire variance of fMRI 

signals (Supplementary Fig. S2) and it does not account for all nonlinearities, as it still 

overestimates the responses in extrastriate regions during short trials in Experiment 3 
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(Supplementary Fig. S1). A recent encoding approach51 addressed these types of 

nonlinearities by implementing compressive temporal summation (CTS) that predicts sub-

additive responses, together with dynamic normalization that depends on response history. 

Therefore, an important direction for future research would be to add CTS and dynamic 

normalization to each of the temporal channels, to test if such a combined approach further 

improves predictions of temporal dynamics in visual cortex, especially in higher-order areas, 

which have larger compressive temporal summation51 and larger adaption43, 52. Another 

direction for future research could combine the 2 temporal-channel model with a spatial 

receptive field model26-29 to generate a complete spatio-temporal understanding of visual 

responses.  

 Given the pervasive use of the standard linear model in fMRI research, our results have 

broad implications for fMRI studies in any part of the brain. We find that timing of stimuli in the 

millisecond range has a large impact on the magnitude of fMRI responses, which has important 

implications for interpreting results of studies that vary the temporal characteristics of stimuli 

across conditions (e.g.53). Critically, we demonstrate that rather than ignoring fast cortical 

processing because of nonlinearities in the standard model, it is possible to generate neural 

predictions at sub-second resolution and use them to accurately predict fMRI responses (see 

also51). These new encoding approaches open exciting new opportunities for investigating fast 

cortical mechanisms using fMRI in many domains including somatosensory, auditory, and high-

level cognitive processing.  

 In sum, our experiments elucidate the characteristics of temporal processing across 

human visual cortex. These findings are important because they (i) explicate for the first time 

the contribution of transient and sustained visual responses across human visual cortex beyond 
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V1, and (ii) show that accounting for neural responses in the millisecond range has important 

consequences for understanding fMRI signals in the second range in any part of the brain. 
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ONLINE METHODS 

 

Participants 

Twelve participants (6 males, 6 females) with normal or corrected-to-normal vision 

participated in this study. All participants provided written informed consent, and the 

experimental protocol was approved by the Stanford University Institutional Review Board. Each 

individual participated in three fMRI sessions, two used to fit and validate the 2 temporal-

channel model, and one session in which we conducted population receptive field (pRF) 

mapping26 to define retinotopic cortical regions and another experiment to define human motion-

sensitive area (hMT+)54-56.  

 

Temporal Channels Experiments 

Visual stimuli 

We used full-field phase-scrambled stimuli to generate robust visual responses while 

minimizing cognitive factors. Stimuli consisted of grayscale images that were generated by 

randomizing the phase spectrum of naturalistic images used in our previous publications42 (Fig. 

1a, right). We normalized the mean luminance and distribution of grayscale values in each 

image using the SHINE toolbox57. Stimuli were displayed to participants in the scanner using an 

Eiki LC-WUL100L projector (resolution: 1920 x 1200; refresh rate: 60 Hz) that was controlled by 

an Apple MacBook Pro using MATLAB (www.mathworks.com) and functions from 

Psychophysics Toolbox58 (http://psychtoolbox.org). Participants viewed the projected images 

through an auxiliary mirror mounted on the RF coil. The mirror was adjusted in each participant 

such that stimuli spanned approximately 40° of visual angle in the vertical dimension and 60° of 

visual angle in the horizontal dimension.  
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Experimental design 

To obtain data that can be used to estimate and test the 2 temporal-channel encoding 

model, we introduce a novel fMRI paradigm that estimates independent sustained and transient 

contributions to fMRI responses across visual cortex using three experiments. All three 

experiments used the same stimuli, trial durations, and task, and only varied in their temporal 

presentation of the stimuli as detailed below and illustrated in Fig. 1.  

Experiment 1 — largely sustained stimulation: phase-scrambled images were shown in 

trials of varying durations (2, 4, 8, 15, or 30 s per trial) in which a single phase-scrambled image 

was shown for the entire duration of the trial (Fig. 1, blue). Before and after each trial there was 

a 12 s baseline period (blank gray screen matched to the mean luminance of the stimuli). Across 

trials the number of stimuli (one per trial) and transients (at the onset and offset of each 

stimulus) are matched; just the duration of sustained stimulation varies. This experiment was 

designed to primarily activate the sustained channel, especially in the long trials.  

Experiment 2 — largely transient stimulation: used the same trial durations and general 

experimental design as Experiment 1, except that in each trial 30 different phase-scrambled 

images were shown briefly, each for 33 ms. Thus, the number of stimuli, number of transients, 

and total duration of visual stimulation are matched across trial durations. The only factor that 

varied across trials was the inter-stimulus interval (ISI) between consecutively presented 

images. The ISI consisted of a blank mean-luminance screen that was 33 ms long in the 2 s 

trials, 100 ms in the 4 s trials, 233 ms in the 8 s trials, 467 ms in the 15 s trials, and 967 ms in the 

30 s trials (Fig. 1, red). This experiment was designed to maximally drive the transient channel 

and minimally the sustained channel since each image was shown for only 33 ms.  

Experiment 3 — combined sustained and transient stimulation: used the same design as 

Experiment 2, except that in each trial we presented 30 different phase-scrambled images in a 
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continuous fashion without an ISI between sequential images. The durations of images (67, 

133, 267, 500, or 1000 ms per image) varied across trials that were matched in length to 

Experiments 1, whereby the 67 ms presentations occurred in the 2 s trials and the 1000 ms 

presentations occurred in the 30 s trials (Fig. 1, green). This experiment was designed to drive 

both the sustained and transient channels: (i) during the entire trial duration there was always a 

stimulus on the screen and (ii) there were always 30 different images per trial. 

Task: In all three experiments, participants were instructed to fixate on a small, central 

dot, and respond by button press when it changed color (occurring randomly once every 2–14 s, 

8 s on average).  

Experiments were designed such that if the sustained component is dominant, then 

Experiments 1 and 3 should yield similar responses since they have the same overall duration 

of stimulation. However, if the transient component is dominant then responses in Experiments 

2 and 3 should be similar as they have the same number of transients. Finally, if transient and 

sustained channels contribute independently to responses, then fMRI signals in Experiment 3 

that has both types of visual stimulation should be higher than either Experiments 1 or 2. 

Data acquisition 

Data were obtained with a TR of 1 s and a surface coil, collecting 16 slices per 

acquisition. To gain full coverage of occipito-temporal cortex, all participants completed two 

scan sessions on different days with partially overlapping slice prescriptions. In each session 

participants viewed three 288 s runs of each experiment. Each run of each experiment 

contained of two repeats of each trial duration presented in random order. Data from different 

sessions were pooled in each participant's volume anatomy. The three runs of each experiment 

were blocked in each participant, and the order of experiments was counterbalanced between 

participants.  
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Population receptive field (pRF) mapping: To delineate retinotopic boundaries, we 

collected four 200 s runs of pRF mapping in each participant, same as in Dumoulin and 

Wandell26. In this experiment, a bar swept across a circular aperture (40° by 40° of visual angle) 

in eight directions and baseline periods were interspersed throughout each run. Participants 

performed the same color exchange fixation task as in the main experiments. We used the data 

to generate polar angle and eccentricity maps, which were used to define retinotopic visual 

areas as in our prior publications41, 42, 59. 

hMT+ localizer: To functionally define hMT+, in each participant we collected one 300 s 

run of a motion localizer experiment41. In this experiment, low contrast, 40° by 40°, concentric 

rings alternated between 16 s periods of motion (expansion/contraction) and 16 s periods of a 

stationary display. The experiment contained 6 cycles of alternating moving and stationary trials. 

Participants performed the color exchange fixation task.  

Magnetic Resonance Imaging (MRI) 

MRI data were collected using a 3T GE Signa MR750 scanner at the Center for 

Cognitive and Neurobiological Imaging (CNI) at Stanford University.  

fMRI: We used a Nova 16-channel visual array coil (http://novamedical.com) to give 

participants a large unobstructed visual field of view. In each participant, we acquired two 

partially-overlapping oblique slice prescriptions in separate scan sessions that together fully 

cover occipito-temporal cortex (resolution: 2.4 × 2.4 × 2.4 mm; one-shot T2*-sensitive gradient 

echo acquisition sequence: FOV = 192 mm, TE = 30 ms, TR = 1000 ms, and flip angle = 73°). 

We also collected T1-weighted inplane images with the same prescription as the functional data 

to align each participant's data to their high-resolution whole brain anatomy. 

In a separate session, we obtained pRF mapping and hMT+ localizer data with the same 

RF coil setup and spatial resolution using 28 oblique slices covering the same brain volume but 
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with a longer TR (resolution: 2.4 × 2.4 × 2.4 mm; one-shot T2*-sensitive gradient echo 

acquisition sequence: FOV = 192 mm, TE = 30 ms, TR = 2000 ms, and flip angle = 77°). We 

again collected T1-weighted inplane images in the same prescription to finely align inplane data 

to the whole brain anatomy of each participant. 

Anatomical MRI: We acquired a whole-brain, anatomical volume in each participant 

using a Nova 32-channel head coil (resolution: 1 × 1 × 1 mm; T1-weighted BRAVO pulse 

sequence: TI = 450 ms, flip angle = 12°, 1 NEX, FOV = 240 mm).  

 

Data analysis  

Data were analyzed with MATLAB using code from vistasoft (http://github.com/vistalab) 

and FreeSurfer (http://freesurfer.net). 

Data pre-processing  

Functional data were aligned to each participant’s native anatomical space using T1-

weighted inplane images, and volumes acquired within the first 8 s of each run were discarded 

to allow time for magnetization to stabilize. We then performed slice time correction, motion 

compensation (within and between scans), and transformed voxel time series to units of percent 

signal change. To normalize the baseline level of response across experiments, we subtracted 

from time points in each run the mean signal across the 4 s periods preceding the trial onsets in 

each run. This baseline removal procedure centers the mean response for the blank screen 

around zero to improve cross-validation performance60 and to enable comparison of trial 

responses relative to the blank baseline.  

Region of interest (ROI) definition  

Areas V1, V2, V3, V3A, V3B, hV4, VO-1, VO-2, LO-1, and LO-2 were defined in each 

participant’s native anatomical space using data from the pRF mapping experiment as in prior 
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publications41, 42, 59 (Supplementary Fig. S2a). To improve model performance in later visual 

areas, we fit one pRF to the run-averaged time series of each voxel using the compressive 

spatial summation (CSS) variant of the standard pRF model61, 62. ROIs were drawn bilaterally on 

each participant’s cortical surface using the resulting polar angle and eccentricity maps. We 

excluded from ROI analyses voxels with pRF fits that explain less than 5% of their response 

variance. The distance between hV4 and hMT+ was calculated in each hemisphere by finding 

the centroid of each region and computing the Euclidean distance between the two points on 

the brain volume (mean distance = 3.04 cm, standard deviation = 1.24 cm). Dorsal visual areas 

V3A and V3B were also defined in each participant, but here we focus on regions in early visual 

cortex (V1, V2, and V3), ventral occipito-temporal cortex (hV4, VO-1, and VO-2), and lateral 

occipito-temporal cortex (LO-1, LO-2, and hMT+) because these regions have been more 

widely studied with regard to their temporal capacity than dorsal stream regions7, 9, 24, 30-32, 63. 

Data for V3A and V3B are included in Supplementary Fig. S3.  

We defined hMT+ bilaterally in each participant using data from the motion localizer 

experiment as described in our previous publications41. hMT+ was defined as voxels in the 

posterior inferior temporal sulcus64 that responded significantly (t > 3) more to moving than 

stationary stimuli. 

2 temporal-channel model  

In typical analysis of fMRI responses19, 25, the stimulus vector is convolved with the 

hemodynamic response function (HRF) to obtain a prediction of the fMRI response. However, 

this model does not account for distinct temporal channels of neural responses30-32, 65. To 

generate predicted fMRI responses accounting for the temporal channels, we implemented an 

encoding approach similar to Horiguchi36. The code used to implement the encoding model is 

available for download (https://github.com/VPNL/TemporalChannels).  
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The model illustrated in Fig. 3 shows the procedure. First, we estimate the neural 

response of each channel by convolving the stimulus (Fig. 3a) separately with the neural 

impulse response function (IRF) for the sustained channel (Fig. 3b, blue channel IRF) and the 

transient channel (Fig. 3b, red channel IRF). This generates the predicted neural response to 

the visual stimulus for each channel. Then, the estimated neural responses for each channel 

are convolved with the hemodynamic response function (HRF, Fig. 3c) and summed to 

generate a prediction of the fMRI response. We use a general linear model (GLM) to solve for 

the contributions of the sustained and transient channels (b weights) given the measured fMRI 

responses.  

The sustained neural channel is characterized by a monophasic IRFS that generates a 

response for the entire duration of a stimulus. The transient neural channel is characterized by a 

biphasic IRFT that generates a brief response at the onset and offset of an image30-32, 34, 35. The 

transient channel also contains a nonlinearity (squaring operation), that generates positive 

responses both from the onset and offset of the stimulus, as firing rates associated with 

transient ‘on’ or ‘off’ responses are positive66 and metabolically demanding36, 37. The 

nonlinearities in this model are at the neural level, and a linear relationship is assumed between 

the neural and BOLD responses.  

Modeling the neural impulse response: Our model used impulse response functions 

estimated from human psychophysics35 (Fig. 3b) to approximate the temporal sensitivity of the 

human visual system. These IRFs are expressed as the difference between excitatory and 

inhibitory linear filters. The excitatory filter is expressed as  

ℎ" 𝑡 = 𝑢 𝑡 ∙ 𝜏 𝑛" − 1 ! ," ∙ (𝑡 𝜏)/0," ∙ 𝑒,2 3 , 
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where 𝑢 𝑡  is the unit step function at time 𝑡; 𝜏 is a fitted time constant, and 𝑛" is the number of 

stages in the excitatory filter. The inhibitory filter incorporates the same time constant and is 

expressed as 

ℎ4 𝑡 = 𝑢 𝑡 ∙ 𝜅𝜏 𝑛4 − 1 ! ," ∙ (𝑡 𝜅𝜏)/6," ∙ 𝑒,2 73 , 

where 𝜅 is the ratio of time constants for the two filters and 𝑛4 is the number of stages in the 

inhibitory filter. Both the sustained and transient channel IRFs are derived with the formula 

 ℎ8 𝑡 = 	𝜉 ℎ" 𝑡 − 𝜁ℎ4 𝑡 	, 

where the normalization parameter 𝜉 is used to match the height of the functions and is equal to 

1 for IRFS and 1.44 for IRFT; the transience parameter 𝜁 is equal to 0 for IRFS and 1 for IRFT.  

The other parameters are taken directly from Watson35 and are: 𝜏 = 4.94 ms, 𝜅 = 1.33, 𝑛" = 9, 

and 𝑛4 = 10.  

Modeling the visual input: Since the neural impulse response to a stimulus occurs on a 

millisecond timescale, we code each stimulus sequence in milliseconds. The stimulus is coded 

as a binary vector of ones and zeros, where one represents the presence of a stimulus and zero 

indicates when there is no stimulus, just a blank mean luminance screen (Fig. 3a). To capture 

the digital transitions of the display (constrained by the 60 Hz refresh rate of the projector), a 

17 ms gap is coded at the offset of each image. Next, the stimulus vector is convolved 

separately with each channel IRF to generate separate sustained and transient neural response 

predictors (Fig. 3b). To model the corresponding fMRI responses from each channel, each of 

the two neural response predictors are convolved with a HRF (Fig. 3c) that was sampled at the 

same high (millisecond) temporal resolution of the neural response predictors. Here, we slightly 

adapted the parameters of the canonical HRF implemented in SPM8 

(www.fil.ion.ucl.ac.uk/spm/software/spm8) to better capture the rise and fall of the BOLD 
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response in our measurements (delay of peak response = 5 s, delay of undershoot = 14 s, 

kernel length = 28 s). 

Fitting the 2 temporal-channel model: Since the HRF acts as a low-pass temporal filter, 

this enables us to resample the predicted fMRI response to the lower temporal resolution of the 

acquired fMRI data (TR = 1 s). This resampled fMRI response predictor is compared to 

measured fMRI responses to solve for the contributions (b weights) of each channel. We 

normalized the predicted fMRI responses across the two channels, such that the maximal height 

is the same across both channels. Then we used a GLM to estimate the weights of the 

sustained (bS) and transient (bT) predictors by comparing the predicted responses to the 

measured response using data across all runs of Experiments 1 and 2. The GLM is applied to 

the mean response of each visual area in each participant. Quantification of model performance 

in each of Experiments 1 and 2 is presented in Fig. 4d-e for V1, in Fig. 5c for hV4 and hMT+, 

and in Supplementary Fig. S2b-c for all ROIs. The predicted fMRI responses generated by the 

model are shown in Fig. 4a for V1 and Supplementary Fig. S1 for other ROIs.  

Validating the 2 temporal-channel encoding model: We assessed the predictive power of 

the 2 temporal-channel model by testing how well it predicts responses in independent data 

obtained in Experiment 3 (Fig. 4b). Thus, we coded the visual stimulation of Experiment 3 in the 

same manner described above, and convolved it separately with the IRFs of the sustained and 

transient neural channels to generate the neural predictors. These neural predictors were then 

convolved with HRF and downsampled to 1 s. Then we multiplied each channel’s fMRI response 

predictor with its respective b weight (bS or bT) that was estimated with data concatenated 

across Experiments 1 and 2. We then tested how well the predicted responses matched the 

measured response in Experiment 3, operationalized as cross-validated R2, also known as the 

coefficient of determination. That is, the proportion of response variance explained using b 
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weights that were estimated from independent data. Although conceptually like the classical R2 

statistic, cross-validated R2 can be negative when the residual variance of an inaccurate 

prediction exceeds the variance in the measured response. Quantification of cross-validation 

performance is shown in Fig. 4f for V1, in Fig. 5c for hV4 and hMT+, and in Supplementary 

Fig. S2d for all ROIs. The predicted fMRI responses generated by the model are shown in Fig. 

4b for V1 and Supplementary Fig. S1 for other ROIs.  

Fitting and validating the standard model: For model comparison to the standard 

approach used in fMRI, we also fit a standard GLM to the data. The standard GLM predicts 

fMRI responses by convolving a stimulation vector with the HRF (basically steps a and c in Fig. 

3). To describe the visual stimulation in our experiments, we used the same millisecond 

resolution visual stimulation vector as in the 2 temporal-channel model described above. After 

convolving with the same HRF used in the 2 temporal-channel model, we downsampled the 

predicted response to 1 s resolution to compare to measured fMRI responses. As the stimuli in 

all experiments were identical and the only difference was the timing, we generated a single 

predictor across Experiments 1 and 2 and fit one b weight. Like the 2 temporal-channel model, 

we fit the standard model to data concatenated across all runs of Experiments 1 and 2, and we 

then cross-validated this b weight on Experiment 3 data. Standard model predictions for V1 are 

shown in Fig. 2a and for other ROIs in Supplementary Fig. S1. Model performance is 

quantified separately for Experiments 1 and 2 in Supplementary Fig. S2b-c.  

Model comparison: We used repeated measures analysis of variance (ANOVA) to 

compare the performance of the 2 temporal-channel model to the standard model across the 

visual hierarchy. To test for differences in the predictive power of the two models at various 

stages, we performed a two-way repeated measures ANOVA with factors of model (2 temporal-

channel/standard) and visual field map cluster (early/ventral/lateral) on the cross-validated R2 
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values from each ROI (see Supplementary Fig. S2d for ANOVAs including dorsal regions). For 

the 2 temporal-channel model, we additionally tested for differences in the relative contributions 

of the sustained and transient channels across the hierarchy using a two-way repeated 

measures ANOVA with factors of temporal channel (sustained/transient) and visual field map 

cluster (early/ventral/lateral) on the channel b weights estimated for each ROI using data from 

Experiments 1 and 2 (Fig. 6b).  

Noise ceiling calculation: To compare the level of noise in measurements from different 

brain regions, we estimated the noise ceiling of each ROI using a procedure proposed by Kay61. 

This method estimates the maximal R2 that a model could achieve given the level of noise in the 

data by simulating noisy measurements of a signal (with noise characteristics matched to the 

data) and using a bootstrapping procedure to estimate the median accuracy with which any 

given model could explain the simulated measurements. This procedure was performed 

separately for the 2 temporal-channel model and the standard model, and we plot the average 

noise ceiling estimate across both models for each ROI in Supplementary Fig. S2.  

Generating group parameter maps of temporal channel contributions: To map the 

topology of contributions from the transient and sustained channels across visual cortex, in each 

participant we fit the 2 temporal-channel model in each voxel using data from Experiments 1 

and 2, as described above. We then generated in each participant’s brain parameter maps of 

each temporal channel’s b weights. To generate group maps, we first registered all participants’ 

anatomy to the FreeSurfer average brain template using cortex-based alignment (CBA) in 

FreeSurfer version 5.3.c67-70. Then, we averaged these maps across participants on the 

common fsaverage cortical surface to obtain group maps (Figs. 6a, 7a; Supplementary Fig. 

S3b). To independently validate our results from ROI analyses, group hV4, VO-1, VO-2, LO-1, 

LO-2, and hMT+ are outlined on the ventrolateral surface using the atlas developed by Wang 
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and colleagues71 (Fig. 6b, Supplementary Fig. S3b). Note that hMT+ is defined based on the 

union of TO-1 and TO-2 maps56 from the Wang atlas71. To illustrate channel contributions in 

relation to the eccentricity map in early visual cortex, we used atlases developed by Benson and 

colleagues72 to overlay the regional boundaries of V1, V2, and V3 and trace eccentricity bands 

on the group average (Fig. 7a).  

Measuring temporal channel contributions across eccentricities: To quantify changes in 

the contributions of transient and sustained channels within regions in early visual cortex as a 

function of eccentricity, we defined a series disc ROIs (each ~1 cm in diameter) in each 

hemisphere of the fsaverage cortical surface using the tksurfer package included with 

FreeSurfer. Using the Benson atlas72, uniformly-sized ROIs were dilated around mesh vertices 

centered on eccentricities of either 5°, 10°, 20°, or 40° (see Fig. 7b) both along the horizontal 

meridian representations in V1 and along the ventral and dorsal borders of V2/V3. Note that: (i) 

we used the Benson72 atlas as it contains eccentricities further into the periphery that were not 

mapped in pRF mapping experiment (visual angle was limited to 20° from fixation, see above), 

and (ii) we placed disk ROIs along the horizontal meridian as the phase-scrambled stimuli used 

in Experiments 1–3 extended further into the periphery in the horizontal than the vertical 

dimension (30° vs. 20° degrees from fixation, respectively). The disc ROIs were then 

transformed to each participant’s native brain space, and we fit the two temporal-channel model 

to data from Experiments 1 and 2 in each ROI as described previously (Fig. 7b). To compare 

differences in temporal channel contributions across eccentricities between V1 and V2/V3, we 

used a three-way, repeated measures ANOVA with factors of channel (transient or sustained), 

visual area (V1 or V2/V3), and eccentricity (5°, 10°, 20°, or 40°).  

Explaining previously reported nonlinearities for short stimuli: To externally validate the 2 

temporal-channel model, we simulated the temporal characteristics of visual stimulation in a 
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previous study by Birn et al.23 that measured V1 responses to brief presentations of a 

checkerboard stimulus that was contrast inverted at a rate of 8 Hz (see Supplementary Fig. 

S4a). We used data from the Birn study because it showed other experimental conditions in 

which the standard model underestimated measured fMRI responses using stimulus 

presentations in the millisecond range. To predict responses to this 8 Hz stimulus with our 

model, we coded each 125 ms phase of a flicker sequence as a separate image within a trial (as 

described for Experiment 3). Using this coding of the stimulus in the Birn study, we used our 2-

temporal channel model to generate fMRI response predictors of each channel, and multiplied 

the predicted response of each channel using the b weights estimated for V1 across 

Experiments 1 and 2 (Supplementary Fig. S4b, left). Finally, we used the same stimulus model 

and the b weight estimated by the standard model for V1 (Supplementary Fig. S4b, right) to 

compare the validity of the two models.  
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SUPPLEMENTARY FIGURES 
 

 
Supplementary Figure S1: Modeling sustained and transient contributions across the visual hierarchy. Each row depicts the 
average ROI response (white) ± 1 standard deviation (gray) across 12 participants. Left: Experiment 1; Middle: Experiment 2; Right: 
Experiment 3. Trial durations are indicated by the thick black lines below the x-axis, and curves extend 2 s before the onset and 12 s 
after the offset each trial. Green: predictions of the 2 temporal-channel model; Blue: predictions of the standard model. Both models 
are fit using data concatenated across Experiments 1 and 2 and then validated against data from Experiment 3.  
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Supplementary Figure S2: Comparison of the variance explained by the 2 temporal-channel vs. standard model. (a) 
Definition of retinotopic visual areas in a representative participant. Boundaries of retinotopic areas (black) are overlaid on an 
example participant’s inflated cortical surface depicting a polar angle map generated using pRF mapping. hMT+ is outlined with a 
dashed white line. (b–d) The performance of the 2 temporal-channel model and standard model is compared across four clusters of 
visual areas: Early visual (V1, V2, V3), ventral (hV4, VO-1, VO-2), lateral (LO-1, LO-2, hMT+), and dorsal (V3A, V3B). Both models 
are fit separately in each region using data concatenated across Experiments 1 and 2, and the accuracy (R2) with which these b 
weights predict fMRI responses is quantified separately for (b) Experiment 1 and (c) Experiment 2. (d) Cross-validated R2 of model 
predictions for independent data in Experiment 3. Note R2 may be negative if the variance in the model prediction exceeds that of 
the data. Error bars: ± 1 SEM across 12 participants. Black: 2 temporal-channel model; White: standard model; Gray line: noise 
ceiling. Statistical significance of model fit comparison across visual areas was evaluated by a repeated-measures ANOVA for each 
experiment, shown beside each panel.   

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/108985doi: bioRxiv preprint first posted online Feb. 15, 2017; 

http://dx.doi.org/10.1101/108985


	 38 

 
Supplementary Figure S3: Modeling sustained and transient contributions in dorsal retinotopic visual areas. (a) Each row 
depicts the average ROI response (white) ± 1 standard deviation (gray) across 12 participants for dorsal regions V3A and V3B. Left: 
Experiment 1; Middle: Experiment 2; Right: Experiment 3. Trial durations are indicated below the x-axis, and curves extend 2 s 
before the onset and 12 s after the offset each trial. Green: predictions of the 2 temporal-channel model; Blue: predictions of the 
standard model. Both models are fit using data concatenated across Experiments 1 and 2 and then validated against data from 
Experiment 3. (b) Group-averaged (N = 12) maps of the transient (left) and sustained (right) channels shown from a dorsolateral 
view. We first estimate b weights of each channel in each voxel in each participant’s native brain space. b weight maps were 
transformed to the FreeSurfer average brain using cortex-based alignment and averaged across participants in this common cortical 
space. The resulting group maps were thresholded to exclude voxels with weak contributions (−0.1 > b > 0.1). Boundaries of dorsal 
and lateral regions (black) are derived from the Wang Atlas, with hMT+ as the union of TO-1 and TO-2. (c) The contributions of the 
transient (x-axis) and sustained (y-axis) channels to responses in each visual area as estimated by the 2 temporal-channel model. 
Marker size spans ± 1 SEM across 12 participants in each dimension and b weights were solved by fitting the 2 temporal-channel 
using data concatenated across Experiments 1 and 2.  
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Supplementary Figure S4: The 2 temporal-channel model explains response nonlinearities for briefly presented stimuli. (a) 
Figure adapted from Birn et al. (y-axis values are unreported in original version). Top left: measured V1 responses to brief (250–
2000 ms) presentations of a checkerboard stimulus that was contrast inverted at 8 Hz in all trial durations; Top right: predicted V1 
responses based on a standard linear model solved using responses to longer presentations of the checkerboard stimulus. Bottom: 
same data as above except the measured and predicted fMRI responses are superimposed for each trial duration. (b) Simulated V1 
responses to the stimuli used by Birn et al. that are derived with the b weights solved using models fit to V1 data from Experiments 1 
and 2 of the present study. Left: predictions of the 2 temporal-channel model for each trial duration; Right: predictions of the 
standard model for each trial duration. Bottom: same data as above except the predictions of the two models are superimposed for 
each trial duration. The simulations show that the standard model replicates Birn et al.’s linear model and underestimate responses. 
In contrast, the 2 temporal-channel model better explains the measured responses (a-left) and predicts higher responses than the 
standard model in each duration (b-bottom). 
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