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Receptive Field for Dorsal Cochlear Nucleus Neurons at Multiple
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Bandyopadhyay S, Reiss LA, Young ED. Receptive field for
dorsal cochlear nucleus neurons at multiple sound levels. J Neu-
rophysiol 98: 3505–3515, 2007. First published September 26,
2007; doi:10.1152/jn.00539.2007. Neurons in the dorsal cochlear
nucleus (DCN) exhibit nonlinearities in spectral processing, which
make it difficult to predict the neurons’ responses to stimuli. Here, we
consider two possible sources of nonlinearity: nonmonotonic re-
sponses as sound level increases due to inhibition and interactions
between frequency components. A spectral weighting function model
of rate responses is used; the model approximates the neuron’s rate
response as a weighted sum of the frequency components of the
stimulus plus a second-order sum that captures interactions between
frequencies. Such models approximate DCN neurons well at low
spectral contrast, i.e., when the SD (contrast) of the stimulus spectrum
is limited to 3 dB. This model is compared with a first-order sum with
weights that are explicit functions of sound level, so that the low-
contrast model is extended to spectral contrasts of 12 dB, the range of
natural stimuli. The sound-level–dependent weights improve predic-
tion performance at large spectral contrast. However, the interactions
between frequencies, represented as second-order terms, are more
important at low spectral contrast. The level-dependent model is
shown to predict previously described patterns of responses to spectral
edges, showing that small changes in the inhibitory components of the
receptive field can produce large changes in the responses of the
neuron to features of natural stimuli. These results provide an effec-
tive way of characterizing nonlinear auditory neurons incorporating
stimulus-dependent sensitivity changes. Such models could be used
for neurons in other sensory systems that show similar effects.

I N T R O D U C T I O N

The goals of receptive-field modeling are to provide a
summary of the stimuli to which a sensory neuron responds
and to predict the neuron’s responses to new stimuli. Receptive
fields of auditory neurons have been based on both tone
response maps (tuning curves; Fig. 1A) and reverse-correlation
analysis using broadband stimuli (de Boer and de Jongh 1978).
The latter results in a spectrotemporal receptive field (STRF),
interpreted as a first-order weighting of stimulus energy
across time and frequency that predicts the neuron’s re-
sponse (spiking) probability (Aertsen and Johannesma 1981;
Eggermont et al. 1983b; Escabi and Read 2003).

First-order models similar to the STRF provide a convenient
and robust summary of the stimulus selectivity of auditory
neurons in many situations. For example, they have been
applied to tracking receptive-field changes during behavioral
tasks (Fritz et al. 2003), to comparing effective receptive fields
for different kinds of stimuli (Theunissen et al. 2000), and to

defining the optimal stimulus for a neuron (deCharms et al.
1998). The strongest test of a receptive field model is whether
it can predict responses to stimuli, preferably to stimuli not
used in construction of the model. In this sense, STRFs work
well for peripheral auditory neurons, such as auditory nerve
fibers and ventral cochlear nucleus (VCN) neurons (de Boer
and de Jongh 1978; Temchin et al. 2005; Yu and Young 2000).
However, prediction by these models is generally poor at
higher levels of the auditory system (Eggermont et al. 1983a;
Escabi and Schreiner 2002; Machens et al. 2004; Nelken et al.
1997; Sen et al. 2001; Theunissen et al. 2000; Versnel and
Shamma 1998; Yeshurun et al. 1989). A further drawback of
STRF models is that the model that emerges from the analysis
is different when derived from different stimuli, such as broad-
band noise versus birdsong (Escabi and Schreiner 2002;
Theunissen et al. 2000), thus creating an ambiguity about the
true receptive field of a neuron. The goal of this work is to
investigate possible reasons for the above-cited failures and to
provide an improved way of characterizing receptive fields of
auditory neurons.

The STRF has a frequency and a time axis, variations along
which show the neuron’s frequency tuning and its modulation
filtering properties, respectively. The frequency selectivity of
neurons in the cochlear nucleus and auditory nerve can be char-
acterized by a weighting-function model (Young and Calhoun
2005; Yu and Young 2000), which attempts to predict only the
average discharge rate of the neuron to a spectrally stationary
stimulus, i.e., only its frequency integration properties. Such a
frequency-weighting function model can be related to the
STRF assuming separability of STRFs in time and frequency
(Young et al. 2005). It should be noted that often the STRF is
separable into a function of frequency and a function of time
(Depireux et al. 2001; Qiu et al. 2003), at least at levels of the
auditory system up to the inferior colliculus.

A weighting-function model is advantageous because it is
feasible to incorporate second-order components into the model,
providing insights into nonlinear properties. Such second-order
terms capture the interactions between energy at different frequen-
cies to model one form of nonlinearity in neurons’ responses. In
the cochlear nucleus, second-order terms improve the perfor-
mance of the weighting-function model (Yu 2003; Yu and Young
2000), but in the dorsal cochlear nucleus (DCN), significant
nonlinearities remain even when second-order terms are incorpo-
rated.

A second source of nonlinearity in auditory receptive fields is
that the neurons’ responses change with sound level (Nagel and
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Doupe 2006; Nelken et al. 1997). This is apparent in Fig. 1 where
the tone response map and the weighting functions change with
the overall sound level of the stimulus. The change in weight-
ing functions with level at 3-dB contrast for the example
neuron in Fig. 1 is more subtle than the changes observed in
another neuron shown later in the paper in Fig. 7. The impor-
tance of sound level is also suggested by changes in both the
gain and prediction performance of weighting functions, de-
pending on stimulus contrast (Reiss et al. 2007).

It is well known that auditory receptive fields vary significantly
with sound level as seen in studies with tones (as in Fig. 1), where
response maps or tuning curves cover a wider frequency range
and show stronger inhibition at higher sound levels (Spirou and
Young 1991; Sutter et al. 1999). This strong inhibition repre-
sents a nonlinearity, which implies that an STRF model or a
spectral receptive field will change depending on the sound
level of the stimuli. Such behavior is seen in quadratic models
of neurons in the cochlear nucleus (Nelken et al. 1997; Yu
2003) but has not been explicitly studied in STRFs. Evidence
of the importance of sound level is provided by the fact that
weighting-function models predict responses of DCN principal
cells more accurately for stimulus sets with low spectral
contrast, i.e., stimuli whose spectral shapes deviate from a
reference level by a limited amount. One of the motivations for
the work described here is to develop better models of spectral
processing using stimuli with a variety of spectral contrasts and
at a variety of levels. Better systems models should lead to a
better understanding of stimulus feature selectivity or what a
neuron “encodes.”

Herein, we develop a receptive-field model for DCN principal
neurons that incorporates sound level as an explicit parameter in
the weighting function. We show that such models predict re-
sponses to stimuli with large contrast, typical of natural sounds.
However, for stimuli with low spectral contrast, the effects of

interactions between different frequencies are more important and
a level-dependent model is unnecessary.

M E T H O D S

Surgical procedures

Experiments were conducted on a total of 14 adult cats (3–4 kg)
with infection-free ears and clear tympanic membranes. Animal-use
protocols were approved by the Johns Hopkins Animal Care and Use
Committee. Cats were tranquilized with xylazine [2 mg, administered
intramuscularly (im)] and anesthetized with ketamine (40 mg/kg im).
Atropine (0.1 mg im) was given to control mucous secretion. A
tracheal tube was inserted. Cats were decerebrated by aspirating through
the brain stem between the superior colliculus and thalamus, after which
anesthesia was discontinued. Core body temperature was maintained at
about 38°C using a regulated heating blanket and lactated Ringer solution
was given intravenously to maintain fluid volume.

The DCN was exposed by opening the skull and dura above the
cerebellum and aspirating the part of the cerebellum overlying the
DCN. Platinum–iridium microelectrodes were advanced into the DCN
under visual control and single neurons were isolated and recorded
extracellularly. Action potentials were detected with a Schmitt trigger
and spike times recorded with a precision of 10 �s.

Experimental protocol

Recordings were made in a sound-attenuating chamber. Acoustic
stimuli were delivered to the ipsilateral ear by an electrostatic speaker
coupled to a hollow ear bar. The bulla was vented through a length of
PE-90 tubing. The speaker was calibrated in situ using a probe tube
placed about 2 mm from the eardrum. The calibration was essentially
flat with fluctuations of �10 dB from 0.5 to 30 kHz. Within the
bandwidth used for the analysis of each neuron (1.25 octaves, subse-
quently discussed), the SD of the calibrations around their values at
the BFs of the neurons was about 2 dB. No correction for the
calibration was applied during the analysis. The effect of fluctuations
in the calibration on the analysis are small and have been ignored.
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FIG. 1. Comparison of receptive fields determined with tones and broadband stimuli to demonstrate nonlinearity in a dorsal cochlear nucleus (DCN) type IV
neuron [best frequency (BF) � 5.2 kHz]. A: response map derived from tones. Each subplot shows the discharge rate of the neuron (minus spontaneous rate)
in response to 200-ms tone bursts at the frequencies on the abscissa. Sound level is given as dB re threshold at BF (�6 dB SPL). Dashed lines show 2 repetitions
of the paradigm. Excitatory and inhibitory areas near BF are shaded black or gray, respectively. B: 1st-order weights of the same neuron from the quadratic model
(Eq. 1) derived with small (3 dB, solid lines) and large (12 dB, dashed lines) contrast stimuli. Weights are the rate-response gain of the neuron (discharge rate
per dB of stimulus level) vs. frequency, computed from responses to broadband random spectral shape (RSS; Yu and Young 2000) stimuli, described in METHODS.
Results are shown at 6 reference sound levels, given as dB re threshold (��18 dB SPL per stimulus component at BF). Frequency scales are the same in A and
B. Nonlinearity is indicated by the differences between the tone and RSS responses, by the differences between the weights derived at 3- and 12-dB contrast,
and by the changes with sound level.
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All data are from well-isolated single neurons, judged from the
separation of the action-potential amplitude from noise and other
action potentials and the presence of a refractory period. Isolated neurons
were characterized using a combination of tones and broadband noise.
Rate versus level functions were collected for best-frequency (BF) tones
and noise by presenting 200-ms stimulus bursts (10-ms rise/fall times)
once per second over an 80- to 100-dB range of sound levels. Type IV
neurons were classified as having moderate spontaneous rates and BF-
tone rate–level functions with excitation at low sound levels and inhibi-
tion at high sound levels (Shofner and Young 1985). Only neurons
located along the electrode track before a BF gradient shift, which
indicates a transition from DCN to VCN, were classified as DCN
neurons. This paper describes data from DCN type IV neurons only.

The acoustic stimuli described in the next section were presented at
a rate of one stimulus per 1.1 s. The stimulus duration was 399 ms.
Each set of stimuli was presented over a range of sound levels, spaced
at 5–10 dB, beginning near threshold. Response rate was computed as
the number of spikes during the stimulus divided by the duration.

Stimuli

The random spectral shape (RSS) stimuli used here are similar to those
used before (Young and Calhoun 2005; Yu and Young 2000). Each
stimulus consists of a sum of tones spaced logarithmically at 1/64th
octave. The tones are grouped into frequency bins of 1/8th octave and all
8 tones within a bin have the same amplitude; the sound level S( f ) in
each frequency bin is the sum of the energies of these tones. The starting
phases of the tones were randomized to avoid a click at stimulus onset.
The phases were randomized for each stimulus. Linear 10-ms onset and
offset ramps were added to the time-domain signal. The stimuli were not
corrected for spectral irregularities in the speaker calibration.

The RSS stimuli had a bandwidth of 6.125 octaves, centered on 5.75
kHz. Each RSS set consisted of 410 stimuli. In 400 of these, the dB
amplitudes of the bins S( f ) were selected pseudorandomly from an
approximately Gaussian distribution with 0 mean and SD of 12, 6, or 3
dB; the SD is subsequently called “spectral contrast.” S( f ) is the dB
level, relative to a reference sound level, of the sound in the bin centered
on frequency f. The remaining 10 stimuli had the reference sound level in
all bins, i.e., S( f ) � 0 dB for all f. Stimuli were organized into successive
plus–minus pairs, so that the dB levels of the first stimulus of the pair
Si( f ) were inverted in the second stimulus Si�1( f ) � �Si( f ), for i odd.
These plus–minus pairs were used to separate the estimation of even- and
odd-order terms, as described previously (Reiss et al. 2007). The 10
all-0-dB stimuli were used to estimate the reference rate R0 in the
quadratic model described in the next section. Note that the all-0-dB
stimuli are not “flat,” in the usual sense. Because of the logarithmic
spacing of tones, this spectrum actually has a 1/f shape.

Data from four type IV neurons were included for which the 6- and
12-dB contrast stimulus sets were different from the earlier descrip-
tion. They were 3.75 octaves wide with a periodic structure that
repeated every 1.25 octaves (9 frequency bins), and had 210 stimuli
(including 10 all-0-dB stimuli) in each set. These stimuli were
resampled during presentation to be centered at the BF of the neuron.
Additionally, these sets did not have plus–minus pairs and thus their
corresponding quadratic model was computed as in Young and
Calhoun (2005). The weighting functions computed with the two
types of stimuli behaved in the same fashion.

Quadratic weighting function model

The average discharge rate r is modeled using a quadratic weight-
ing function as follows

r � R0 � �
j

wjS�ƒj� � �
k
�

j
mjk S(ƒj)S(ƒk) (1)

The first-order weights wj are the “gains” of the neuron in spikes/(s
dB) for sound energy in the corresponding frequency bin ( fj). The

second-order weights mjk are the gains of the neuron in spikes/(s dB2)
for joint sound energy in the jth and kth bins. The parameters of this
model were estimated by minimizing the chi-square error between the
rates predicted by the model and the actual rates, using the method of
normal equations. Even- and odd-order terms in Eq. 1 were handled
separately, for stimuli constructed with plus–minus pairs (Reiss et al.
2007). The assumptions and motivations for the quadratic model have
been discussed previously (Young and Calhoun 2005).

Testing validity and generality of the model

To test the quality of the fit, the model was estimated from 75% of
the data points and then tested by using it to predict the remaining
25% of the data points. Confidence intervals were calculated using
�200 bootstraps (Efron and Tibshirani 1993), each time estimating
the model from 75% of the data and predicting responses to the
remaining 25% of stimuli. The measure of prediction performance
was the fraction of variance, defined as

fv � 1 �

�
j

�rj � r̂j�
2

�
j

�rj � r��2
(2)

where rj is the actual rate for the jth stimulus, r̂j is the rate computed
by the model, and r� is the mean rate. fv has a maximum value of 1,
when the model fits the data perfectly, and decreases as the error
increases. It is zero when the mean rate fits as well as the model and
can go negative for poor models. Here, fv was not limited at zero.

Level-dependent weight model

To test the importance of weight variation with sound level, we
developed a model in which the weights are explicitly a function of
stimulus level. The quadratic model contains a form of weight
variation with sound level. By regrouping the terms in Eq. 1, the
quadratic model can be rewritten as a first-order weight summation
with level-dependent weights as follows

r � R0 � �
j
�wj � �

k
mjk S�ƒk��S�ƒj� (3)

where the weight at frequency fj is now a constant (wj) plus a linear
function of the sound levels in all of the bins (the summation in
brackets). Thus the quadratic model applies a correction for sound
level, but it is capable of only a first-order correction. Here, we
compare the quadratic model with a level-dependent weighting func-
tion model (LDWM), in which the weights vary with sound level in
a less-constrained way. In the LDWM

r � R0 � �
j

gj �Sj�S�ƒj� (4)

The symbols are as before, except that the gj(Sj) represents first-order
weights that vary with the stimulus level at frequency fj, denoted by
Sj. The second-order interactions between different frequencies (i.e.,
terms in mjk for j � k in Eqs. 1 and 3) are not explicitly present in this
model. The weight in a particular frequency bin is assumed to be a
function of the sound level in that bin only. Although this assumption
reduces the performance of the model at low spectral contrast, it was
made to keep down the number of parameters that have to be
estimated. Figure 2 shows an example of a weight function gj(Sj) as a
function of bin frequency fj (abscissa) and the stimulus level in that
bin Sj (ordinate). The weights as a function of stimulus energy in the
bin at BF, gBF(SBF), are shown as the red line on the back wall of the
plot. In both fitting the model and computing its response to a
stimulus, Eq. 4 is used and the weight in each frequency bin is
determined from the stimulus energy in the bin by interpolation as
subsequently described. This local linear variation of weights makes
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the LDWM locally quadratic, meaning that the weights vary with
level as in Eq. 3, but only for the diagonal terms, mjj and not the
cross-frequency terms mjk for j � k. However, the slope of the weight
variation also changes with level, to differentiate Eq. 4 from Eq. 3.

The functions gi(Si) are piecewise linear and are specified by a
matrix of weights W in successive segments, defined by the elbow
points in the vector e

gi �Si� � wk, i �
Si � ek

	
�wk � 1,i � wk,i� where ek � Si � ek�1 (5)

The elbows are placed every 	 dB and the weights within each 	 dB
step are linearly interpolated based on the weights at the two ends of
the step. Because the stimuli had some sound levels outside the
endpoints of e, linear extrapolation of the gains was done at these
levels, continuing the slope of the segment adjacent to the boundary
of e. Because the rate for S � 0 is R0, by definition (Eq. 4) the weight
at 0 dB cannot be estimated from the data. Thus the elbow points
nearest 0 dB were usually offset from 0, i.e., placed at 
	/2. The
highest elbow was usually 10–15 dB above the highest reference level
in the data and similarly for the lowest elbow; this limit was necessary
to guarantee sufficient data to estimate the gains.

The LDWM was fit to a neuron’s responses to several sets of RSS
stimuli with different contrasts and overall sound levels. However, in
the LDWM, the stimulus energies are all expressed relative to a single
reference or all-0-dB stimulus component level, which is the s � 0
stimulus for the LDWM. Thus when used with Eq. 4 the stimuli from
an RSS set with reference (all-0-dB) level A dB SPL are corrected for
the reference sound level B of the LDWM by adding A � B to the Si

of the RSS set. The model was fit by minimizing the chi-square error
between rates and model predictions using a gradient-descent algo-
rithm (the Matlab function lsqcurvefit available in the Matlab Opti-
mization Toolbox). When computing rates from the model, its output
was thresholded at 0, disallowing negative firing rates. The number of
parameters estimated for the LDWM is the number of elements in the
vector e times the number of frequency bins, which is of the order of
100. To maximize the ratio of data to parameters, the LDWM weights
were computed over a continuous range of frequencies (�1.25 oc-
taves wide) symmetric around the BF of the neurons. To compare
performances, the corresponding quadratic models were computed

over the same range of frequencies. This range is wide enough to
include all the significant nonzero weights in most neurons (Yu 2003).

R E S U L T S

Variation of gain with stimulus amplitude in different
frequency bins

Two assumptions are important to the LDWM: first, that the
weight varies with the stimulus level and second that the
stimulus level in a particular frequency bin is the primary
determinant of the weight in that bin. The plausibility of these
assumptions is supported by Fig. 3, which shows first-order
weights (wi in Eq. 1) computed from subsets of the overall RSS
stimulus set by constraining the amplitudes in one frequency
bin. A subset of 100 of the 400 RSS stimuli from a set with
spectral contrast of 12 dB was chosen, these being the ones
with the smallest 100 amplitudes in a particular frequency bin,
say fC. The result was to constrain the amplitudes S( fC) to
range from approximately �3.8 to �3.8 dB, with small vari-
ation depending on the choice of fC. Because the bin ampli-
tudes are independent, this selection did not systematically
change the distribution of amplitudes in the other bins, and
those remained at 12-dB spectral contrast. The first-order
weights were then recomputed for the chosen subset of stimuli.
In Fig. 3, these constrained weights are compared with the
weights for the full 3- and 12-dB RSS stimulus sets, for three
constraint bins, as indicated in the figure legend. The symbols
mark the bin with the stimulus-amplitude constraint.

Figure 3 shows that constraining the stimulus amplitude in
one bin causes the first-order weights to change substantially
from those computed with 12-dB contrast stimuli (heavy dotted
line); it is important that the change occurs primarily in the
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constrained bin. For example, the weights in bins 6 (circle) and
7 (left triangle) increase significantly when those bins are
constrained. The weight in bin 5 (diamond) does not change
when it is constrained, perhaps because the 3- and 12-dB
contrast stimuli give roughly the same weight in bin 5. In this
example, the weights in constrained bins approach the weight
size for 3-dB contrast (heavy dashed line). In other neurons, the
weight in the constrained bin does not always approach the
3-dB-contrast value, but the change in weight due to constraint
is always in the constrained bin. This result shows that the
estimated weight wC in a particular bin is affected by the
presence of high energy [large S( fC)] in that bin. Although
the constrained weights do not equal the weights for 3-dB
spectral contrast, this analysis shows that the effects of changes
in level are largely local, confined to the frequency bin itself,
and provides a motivation for the LDWM formulation.

Level-dependent weight model (LDWM)

The LDWM of Eq. 4 was fit to data from 21 DCN type IV
neurons. Generally, data from multiple spectral contrasts and
reference levels were used depending on the data available. For
comparison, quadratic models were fit to the same data. Usu-
ally the LDWM was fit to the whole data set and the quadratic
model was fit separately to each RSS data set (i.e., a set of RSS
stimuli at one reference level and spectral contrast).

Figure 4 shows the weights for a type IV DCN neuron
(BF � 21.1 kHz) in a three-dimensional (3D) plot (Fig. 4A).
The same weights are plotted as contours of weight versus
frequency at various sound levels (Fig. 4B). These sound levels
are the elbow points for the piecewise linear fit of the weights
(ek in Eq. 5). In this case, the reference level was set below the
threshold of the neuron (�20-dB SPL per component). At
levels just above threshold (17–23 dB re reference in Fig. 4B),
the weights are positive and narrowly tuned near BF. At higher
levels, the neuron is inhibited by frequencies at and below BF
and is excited by frequencies just above BF. This pattern of
first-order weight variation is observed in quadratic models of
about 60% of DCN type IV neurons (Yu 2003). Looking across
sound level at a fixed frequency, it is clear that the weight
variation with sound level is not linear, as assumed in the
quadratic model (Eq. 1). Furthermore, the weights in each
frequency bin change differently, disallowing a separable
model consisting of a frequency tuning function multiplied by
a single nonlinear function of level.

The SDs of the model parameters were estimated by boot-
strap, where the estimation was done 100 times based on 75%
of the data, randomly chosen without replacement from the full
set. The SDs of the weights are shown as error bars in Fig. 4B;
they are small because this is a highly overdetermined
system of equations (�100 parameters estimated from
�2,000 equations). The robustness of the estimation algo-
rithm was also tested by starting from random initial values
for the weights and repeating the gradient descent; the
resulting weight estimates had small variations, comparable
to the error bars in Fig. 4B.

The quality of the model was tested using the fv (Eq. 2)
when predicting responses to the 25% of data not included
in the model estimation. Figure 4C shows a distribution of
fv values for this neuron. The performance is quite good for
all spectral contrasts and sound levels, except for the cases

with fv near 0 (arrow). These were all cases of 3-dB spectral
contrast at a sound level near threshold where the rate
responses were small and the threshold nonlinearity was not
well fit by the model. Cases with 3-dB spectral contrast at
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and random initial weights. C: histogram of the distribution of fv in predictions
of the 25% of data not included in the model fits. There are 100 fv values
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higher reference levels gave good performance and lie in the
peak centered near 0.8.

A second example of an LDWM is shown in Fig. 5. In this
case the model was estimated from data collected with 3-
and 12-dB spectral contrasts at only one reference level, so
the range of levels over which the LDWM was estimated is
small compared with the neuron in Fig. 4. Again, the
weights are nonmonotonic with level, decreasing at the
highest level. Clearly the quadratic model will not be able to
fit this weight variation. In Fig. 5B, the performance of the
LDWM in Fig. 5A is compared with that of three quadratic
models in predicting data obtained with 3-, 6-, and 12-dB
spectral contrast (in each case the quadratic model was fit to
data at the same spectral contrast). At 3 dB, both models
work well ( fv � 0.77 for the LDWM and 0.87 for the
quadratic model). At 6 and 12 dB, the LDWM does better
than the quadratic model (at 6-dB contrast, fv � 0.66
LDWM and 0.20 quadratic; at 12-dB contrast, fv � 0.47
LDWM and 0.0 quadratic). An important point to note is
that the LDWM does better than the quadratic model in
predicting responses to the 6-dB stimuli, even though stim-
uli of 6-dB spectral contrast were not used in fitting the
LDWM. The fv values given in the previous sentences are
bootstrap averages and not the values for the examples in
the figure.

Relative performance of the LDWM and quadratic model

Over all the 21 neurons studied, the LDWM generally
performed better at predicting rates for 12-dB spectral contrast,
whereas the quadratic model generally performed better at
3-dB spectral contrast. Figure 6 shows the fv values for rate
predictions at the two spectral contrasts with the two models.
The fv values for the quadratic model’s fits are shown along the
abscissa; they are better for 3-dB contrast (✕ symbols, median
0.71) than for the 12-dB contrast (circles, median 0.26, signif-
icantly different P � 6 � 10�6 by rank-sum). For the LDWM
on the ordinate, the data have similar medians (0.49 for 12 dB
and 0.46 for 3 dB, NS). However, it is better to compare fv
values within a neuron; for this comparison, notice that the ✕
symbols, which show data for 3-dB contrast, are mostly below
the dashed line (41/58), meaning better performance for the
quadratic model; the circles, for 12-dB contrast, are mostly
above the line (26/38; different at P � 10�4 by �2), meaning
better performance for the LDWM.

Finally in comparing prediction performance of the models
directly, for 12-dB contrast the median performance of the
LDWM (0.49) is significantly greater (P � 0.0003 by rank-
sum) than that of the quadratic model (0.26). On the other
hand, for 3-dB contrast the median performance of the qua-
dratic model (0.71) is significantly greater (P � 0.0033 by
rank-sum) than that of the LDWM (0.46). Thus the quadratic
model does better for small contrast, whereas the LDWM does
better for large contrast.

FIG. 6. Comparison of the performance ( fv) in predicting responses to the
25% of RSS stimuli not used in fitting the models. Performance of the
quadratic model is shown on the abscissa and performance of the LDWM on
the ordinate. Data are shown for 96 cases studied in 21 DCN type IV neurons
in which both models could be fit to the data. There are more cases than
neurons because some neurons were studied with both 3- and 12-dB spectral
contrast or at multiple sound levels. Data obtained with 3- and 12-dB spectral
contrast are identified by the symbols as in the legend. Dotted line shows where
performance is equal. Arrows on the abscissa and right-hand ordinate show the
medians of the corresponding data points. Shaded box shows where the mean
rate is a better fit to the data than either model (negative fv). fv values for 3-dB
spectral contrast in this figure are somewhat smaller than those obtained in
similar experiments (Reiss et al. 2007) because the stimuli were not repeated
multiple times to reduce the variance of the rate estimates.
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Quadratic models derived from the LDWM

In a previous paper (Reiss et al. 2007) it was shown that the
weights of the quadratic model are larger for responses to
stimuli with 3-dB contrast (as in Fig. 1B) than with 12-dB
contrast. If the LDWM is an accurate measure of the neuron’s
receptive field, then it should predict this change in weight
amplitude with spectral contrast. A test of this idea is to fit the
LDWM to a set of rate responses to RSS stimuli, compute
artificial rate responses from this model for 3- and 12-dB RSS
stimulus sets, and then fit the quadratic model to the two sets
of artificial data. Figure 7 shows this calculation for the same
neuron as in Fig. 4. Quadratic model weights computed from
the actual and model data are compared; results from the 3-dB
contrast are in the top half of the figure and for 12-dB contrast
in the bottom half. The first-order weights computed from
actual rate data (dotted lines in Fig. 7, A and C) and model data
(solid lines in Fig. 7, A and C) agree qualitatively in that they
have the same excitatory and inhibitory regions, although the
weight values often differ by 1 SD. The two kinds of weights
also change shape in the same way as stimulus level changes
(indicated by different colors). More important, as with actual
data, the weights computed from the model data are signifi-
cantly larger for the 3-dB contrast (top row) compared with the
12-dB contrast (see following text). The second-order weights
(Fig. 7, B and D) are compared at three sound levels and show
a similar qualitative agreement. Note that the on-diagonal
second-order weights (terms mjj) are better reproduced than the
off-diagonal weights. Apparently the effects of the off-diago-

nal weights are small, although they may account for some of
the difference between the data and model in Fig. 7, A and C.

For this neuron, the quadratic model weights (Fig. 7) are
similar in shape to the cross-sectional weights of the LDWM
(Fig. 4B). Note, however, that the magnitude of the weights for
the LDWM cannot be directly compared with the weights of
the quadratic model. The quadratic model’s weights are always
expressed with reference to the all-0-dB stimulus of the RSS
stimulus set. However, for the LDWM, the weights are ex-
pressed with respect to a particular fixed reference level for all
stimuli. As explained in METHODS, the two reference levels are
not necessarily the same. Changing the LDWM’s reference
will change the magnitude of the weights of the LDWM.

D I S C U S S I O N

Variation in weights with sound level

The LDWM differs from previous STRF and weight-func-
tion models by explicitly accounting for the sound levels of the
frequency components of a stimulus when calculating a
weighted sum across frequency. As such it provides a method
of evaluating the importance of stimulus level in the formula-
tion of auditory receptive-field models. The results across a
population of DCN type IV neurons show a nonmonotonic
variation of weights with sound level in which weights first
increase with level and then decrease rapidly and become
negative, or approach negative values, at levels a few 10s of dB
above threshold (Figs. 2, 4, and 5). It is important to note that
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FIG. 7. Quadratic model weights (Eq. 1)
are compared for weights computed from the
actual rate data (dashed lines) and weights
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is the same neuron as in Fig. 4. A: 1st-order
weight functions computed from the actual
data and from the LDWM model data for
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component. These are from the same neuron
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the variation of weights with level is different for different
frequencies and thus cannot be represented by a separable
model of frequency and level tuning. A test of separability
done by performing a singular value decomposition (SVD) on
the matrix of LDWM weights (Sen et al. 2001) indicates
inseparability in frequency and level.

The nonmonotonic behavior of LDWMs seems to be suffi-
cient to account for the apparent nonlinearity of DCN type IV
neurons (Reiss et al. 2007; Yu 2003; Yu and Young 2000)
observed with RSS stimuli or with natural spectra such as
head-related transfer functions, which show a similar 10- to
20-dB range of variation of component stimulus levels as the
RSS stimuli (Musicant et al. 1990; Rice et al. 1992). In both
cases the quadratic model does a poor job of predicting
responses to stimuli with approximately 12-dB spectral con-
trast (Fig. 6). The quadratic model assumes a linear depen-
dence of weights on level (Eq. 3), which is inadequate to fit the
weights plotted in Figs. 2, 4, and 5. As a result the calculation
of weights for such neurons represents an averaging between
larger weights for small stimulus-level deviations and smaller
weights for large deviations. The result is a poorly fitting
quadratic model that is a compromise between the small- and
large-deviation regimes causing weights to be smaller for 12-
than for 3-dB spectral contrast. For stimuli with 3-dB spectral
contrast, the quadratic model is adequate because the small
level-deviations fall within a range where the weights are
linearly dependent on level.

The considerations in the previous paragraph do not explain
why the quadratic model does better than the LDWM at 3-dB
spectral contrast (Fig. 6). Presumably the quadratic model in-
cludes important interactions between frequencies (the terms in-
volving mjk for j � k in Eqs. 1 and 3) that are not included in the
LDWM explicitly. At 12-dB contrast, the effect of sound level
is the dominant effect and the LDWM does better, but at 3-dB
contrast the effect of sound level is smaller and is well
approximated by the quadratic model, so the interaction among
frequencies becomes the important effect.

Comparison with tone response maps and implicit
cross-frequency interactions

The dimensions of the LDWM, frequency and level, match
with those of the classical receptive field characterization, i.e.,
tone response maps (e.g., Fig. 1A). In spite of this match the
two are fundamentally different characterizations. The LDWM
gives the sensitivity of the neuron to changes in stimulus
energy in a particular frequency bin at a particular energy level
in a broadband sound. Such sensitivity cannot be derived using
tones. The differences between the spectral weighting func-
tions (Fig. 1B) and the tone response map profiles (Fig. 1A)
clearly underline this fact. Tone response maps provide infor-
mation about the sensitivity of the neuron to narrowband
stimuli in the absence of energy in surrounding frequencies.
Thus the independence of frequency channels shown in Fig. 3
should not be taken to mean that the LDWM can be derived
using tones or narrowband stimuli separately in each frequency
channel. Nelken and colleagues (1994a,b) investigated a sim-
ilar question using multiunit activity in auditory cortex. They
found that the responses were determined mainly by the single-
tone tuning with strong modulation by two-tone interactions and
only weak modulation by additional tones. Thus tone and broad-

band tuning are expected to differ substantially, as in Fig. 1, with
most of the difference occurring in the transition from one
frequency component to two.

Furthermore, the nature of the stimuli (broadband) used to
derive the LDWM creates implicit frequency interactions. The
LDWM weight in a particular frequency bin at a particular
level is the sensitivity of the neuron to changes in stimulus
energy in that bin and level when energy in all the other bins
is at the average energy level of all the stimuli. Thus an average
cross-frequency interaction is present in the LDWM model and
this interaction effectively changes with reference level. As a
result, the second-order models derived from the LDWM (Fig. 7,
B and D) have weak cross-frequency terms in spite of having
no such explicit interactions in the model. Frequency response
maps on the other hand are devoid of any such interactions.

Contrast and luminance dependence in vision

A considerable amount of literature exists that addresses the
issue of contrast and luminance gain control in the early visual
system (Bonin et al. 2006; Mante et al. 2005; Shapley and
Victor 1981; Zaghloul et al. 2005). Luminance adaptation
occurs at the level of the retina, and contrast gain control is
present in the retina and enhanced in later stages. In all these
cited studies, gain control has been studied in terms of a
spatiotemporal or temporal filter, and not just spatial filters that
are analogous to the frequency weighting functions in the
present study. Contrast gain control in vision also shows
similar results in that the sizes of the filters change with
stimulus contrast, whereas similar shape is maintained. Addi-
tionally, these filters have shorter integration times with in-
creased contrast. However, unlike our study, prediction perfor-
mance of the linear filters (followed by a static nonlinearity)
usually remained equally good at all contrast sizes; for exam-
ple, in the LGN, mean explained variances are consistently
70% (Bonin et al. 2006). Thus even in early vision, although
fairly linear, contrast gain control requires determination of the
filters for each different contrast and mean luminance to obtain
a predictive model. Thus finding a single predictive model for
all contrasts together requires a luminance-dependent weight
model much like the LDWM. However, independence of
contrast and luminance gain controls (Mante et al. 2005)
suggests other ways of combining data from different lumi-
nance and contrasts into a single model. Such independence of
contrast and sound level is absent in DCN type IV neurons.

Implications for STRFs

Because the STRF, minus its temporal component, is similar
to the first-order weight function of the quadratic model
(Young et al. 2005), the results shown here imply that STRFs
should also depend on stimulus contrast and stimulus level. In
addition, the predictive ability of STRFs should improve for
stimuli with lower contrast. STRFs derived from stimuli with
“natural” contrasts, on the scale of 12 dB, may reflect a
compromise process similar to that postulated earlier for
weights, providing an explanation for the poor prediction
performance of STRFs (Machens et al. 2004) and the stimulus
dependence of STRF shape (Theunissen et al. 2000; Valentine
and Eggermont 2004). STRFs represent a linear function of the
stimulus parameters, but those parameters are obtained with a
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nonlinear transformation (energy or envelope) of the stimulus
(Escabi and Read 2003; Theunissen et al. 2000), like dB energy
in the present study. It may be possible to improve the
prediction performance of STRFs by properly choosing the
nonlinear measure, as in the square-law function in models
of complex cells in visual cortex (Carandini et al. 2005).
However, it is doubtful that such a strategy could capture
both the nonmonotonicity of the LDWM and the benefits of
frequency interactions, demonstrated at low spectral con-
trast. Finally, this discussion is based on the spectral non-
linearity alone. It may be that nonlinearities are present in
temporal interactions as well, which could additionally
affect performance of STRFs.

Sources of nonlinearity in the DCN

The nonlinear behavior typical of DCN neurons is not seen
in the inputs to the DCN from the auditory nerve (Young and

Calhoun 2005) nor in neurons of the VCN (Yu 2003; Yu and
Young 2000). Thus the nonlinearity of DCN principal cells is
a computational property of its interneuronal circuits. Non-
monotonicity of rate responses across sound level is a defining
feature of DCN principal-cell (type IV) responses (Spirou and
Young 1991) and has been attributed to inhibitory inputs from
so-called type II interneurons, vertical cells (Voigt and Young
1990). Previous analyses of DCN nonlinearity led to the
conclusion that nonlinear responses are observed in DCN
principal neurons for stimuli that activate the type II interneu-
rons (Nelken and Young 1997; Nelken et al. 1997). Although
these interneurons project to the VCN (Ostapoff et al. 1999;
Wickesberg and Oertel 1988; Zhang and Oertel 1993) and
inhibitory responses are seen in VCN neurons in vivo (e.g.,
Caspary et al. 1994; Ingham et al. 2006; Kopp-Scheinpflug
et al. 2002), inhibitory effects seem to be weaker in VCN and
specific effects of type II inhibition in VCN have not been
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identified in vivo. Thus the nonmonotonicity of type IV re-
sponses produced by inhibitory inputs from vertical cells re-
mains the most likely source of the nonlinearity of the DCN
output representation. The role of other inhibitory inputs
(Davis and Young 2000; Reiss and Young 2005) is not clear.

Different degrees of edge sensitivity in type IV neurons:
predictions of the LDWM

A previous paper (Reiss and Young 2005) identified three
classes of DCN type IV neurons according to their sensitivity
to steep rising spectral edges, such as the lower-frequency edge
of a noise band or the upper-frequency edge of a noise notch.
These three groups were generally characterized by different
responses to broadband noise, as seen in rate versus level func-
tions. Figure 8, A–C shows rate–level functions for three neurons
studied here whose properties correspond to the groups defined by
Reiss and Young. All three neurons have nonmonotonic tone
rate–level functions (solid lines) that are typical of type IV
neurons; the noise rate–level functions (dashed) define the
three groups, as subsequently described. The corresponding
LDWMs are plotted in Fig. 8, D–F.

The LDWM was used to predict the (unknown) responses of
these three neurons to a broadband noise with a 30-dB notch
(or stopband) positioned at various frequencies relative to the
neuron’s BF; the predictions are plotted in Fig. 8, G–I, which
plot discharge rate versus the upper-frequency edge of the
notch, as in Reiss and Young. The example in Fig. 8A has a
weak response to noise, typical of the largest group of type IV
neurons, which give a peak of discharge rate when the rising
edge of the notch is aligned on BF. This is what the LDWM
predicts for this neuron (Fig. 8G). The second example, in Fig.
8, B, E, and H, has very strong noise responses; these neurons
give inhibitory responses to the notch without the rate peak
when the edge is at BF (Fig. 8H). Finally, the third example
(same neuron as in Fig. 4) has strongly nonmonotonic noise
responses (Fig. 8C) and an excitatory response to the notch
(Fig. 8I). In the 21 neurons studied, the LDWM predicted a rate
peak at the spectral edge in 13 cases, notch inhibition in four
cases, notch excitation in two cases, and a rate peak at the
falling spectral edge in two cases. This distribution is similar to
that reported previously (Reiss and Young 2005). These re-
sponses to notch sweeps are usually not well predicted by
quadratic models (Reiss 2005).

The differences between the three LDWMs in Fig. 8 are
subtle, involving the depth and strength of inhibitory inputs.
These results illustrate that small differences in the receptive
field can lead to large differences in responses to properly
chosen stimuli. The fact that the LDWM shows differences in
responses to edge stimuli that correspond to those predicted for
these neurons provides support for the usefulness of the
LDWM.

Advantages and limitations of the LDWM

The LDWM has the drawback of all weighting-function
models relative to STRFs, in that it does not contain informa-
tion about time-domain responses. Nevertheless, it is an effi-
cient way to characterize the spectral characteristics of a
neuron. Although the number of stimuli used in deriving the
LDWMs in this study was usually about 1,000, such models

can be derived from far fewer stimuli. In fact, an advantage of
the LDWM over a series of quadratic models covering the
same range of sound levels is that the latter requires more
stimuli because more parameters must be estimated. Of course,
this efficiency occurs because the LDWM lacks explicit inter-
actions between frequencies. Inspection of Fig. 7, B and D
shows that the second-order weights derived from model data
have smaller interactive terms (off-diagonal elements) than
those from the actual data. Interactions across frequency can be
explicitly added to the LDWM, at a cost of many additional
parameters.

One alternative to models like the LDWM is a network
model based on the hypothesized organization of the DCN.
Network models replicate many aspects of DCN type IV
responses (Hancock and Voigt 1999; Reiss and Young 2005;
Zheng and Voigt 2006), although estimating parameters of the
network from principal cell responses suffers from a lack of
uniqueness. Further because of incomplete understanding of
the circuitry and properties of the circuit elements in the DCN
(Davis and Young 2000; Reiss and Young 2005) and higher
auditory nuclei, such models require additional assumptions.
Systems models like the LDWM do not suffer from such
problems.
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