1	
2	Dynamic gain adjustments in descending corticofugal outputs from
3	auditory cortex compensate for cochlear nerve synaptic damage
4	
5	Meenakshi M Asokan ^{1*,2} , Ross S Williamson ^{1,3} , Kenneth E Hancock ^{1,3} , and Daniel B Polley ^{1,2,3}
	Weenaksin Wessokan , Kosso Winamson , Kenneth E handoek , and Banier B Foney
6	
7	1 Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114
8	² Division of Medical Sciences, Harvard University, Boston MA 02114
9	³ Department of Otolaryngology, Harvard Medical School, Boston MA 02114
10	
11 12	
12 13	
13	
15	
16	
17	
18	
19	Keywords: Top-down, centrifugal, descending, feedback, tinnitus, hyperacusis, layer 5, auditory
20	cortex, GCaMP, homeostatic plasticity, synaptopathy
21	
22	
23	
24 25	
25 26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36 37	
38	

39

Abstract

40	Layer 5 (L5) cortical projection neurons innervate far-ranging brain areas to coordinate
41	integrative sensory processing and adaptive behaviors. Here, we characterize a compensatory
42	plasticity in L5 auditory cortex (ACtx) projection neurons with axons that innervate the inferior
43	colliculus (IC), thalamus, lateral amygdala and striatum. We used widefield calcium imaging to
44	monitor daily changes in sound processing from the dense plexus of corticocollicular (CCol)
45	axon terminals in awake adult mice. CCol sound level growth functions were stable in control
46	conditions but showed bi-phasic gain changes following damage to cochlear afferent synapses.
47	Auditory nerve and CCol growth functions were sharply reduced hours after cochlear
48	synaptopathy, but CCol response gain rebounded above baseline levels by the following day
49	and remained elevated for 2 weeks despite a persistent reduction in auditory nerve input.
50	Sustained potentiation of excitatory ACtx projection neurons that innervate multiple limbic and
51	subcortical auditory centers may underlie hyperexcitability and aberrant functional coupling of
52	distributed brain networks in tinnitus.
53	
54	The auditory system employs a variety of gain control mechanisms to encode
55	fluctuations in acoustic signal energies that can vary by over a million-million fold (120 dB).
56	Auditory gain control places a premium on speed, often activating within tens or hundreds of
57	milliseconds following sudden changes in sound level to protect the ear from over-exposure
58	and adjust the dynamic range of neural coding ^{1,2} . In addition to these "fast acting" gain control
59	systems, central auditory neurons also exhibit slower gain control systems over time scales

ranging from days to months that increase neural excitability following peripheral afferent
 damage³.

Descending auditory centrifugal projections may play an important role in adaptive gain 62 control. For example, brainstem efferent neurons change the acoustic impedance of the middle 63 ear and dampen excitability of cochlear sound transduction to protect the inner ear and 64 normalize activity levels in the auditory nerve⁴. The largest descending auditory pathway arises 65 from neurons in the deep layers of the auditory cortex (ACtx) that innervate nearly all levels of 66 subcortical auditory processing as well as many structures outside of the classical auditory 67 pathway such as the lateral amygdala and striatum^{5,6}. Less is known about how corticofugal 68 neurons support various forms of central gain control^{7,8}. Although non-selective lesions, 69 inactivation or stimulation of ACtx neurons can have striking effects on subcortical auditory 70 responses, the effects are often heterogeneous, with neurons in the same brain region showing 71 diverse forms of modulation $^{9-14}$. 72 Corticofugal neurons themselves are not a singular cell type, but rather comprise a 73 diverse set of projection neurons with distinct local inputs, subcortical targets, intrinsic 74 properties and synaptic properties^{15–20}. Traditional approaches to characterize the effects of 75 cortical feedback on subcortical sound processing and plasticity through cooling, 76 pharmacological silencing or microstimulation indiscriminately manipulate multiple types of 77 corticofugal neurons as well as interneurons, intracortical projection neurons or even axons of 78 passage. This technical limitation may explain why the subcortical effects of ACtx manipulations 79 are often heterogeneous and has generally hampered progress in understanding how 80 corticofugal neurons contribute to auditory processing and gain control. Recent efforts have 81

82	begun to circumvent these limitations by using approaches to lesion ^{21,22} , rewire ²³ , or
83	optogenetically activate and silence select classes of auditory projection neurons ^{24–27} . While
84	paradigms to artificially manipulate the activity of corticofugal pathways have their appeal,
85	there is also a need to monitor the activity of select classes of corticofugal neurons and
86	describe how naturally occurring plasticity in their auditory response profiles support central
87	gain adjustments across a variety of time scales. To this end, we adapted a widefield calcium
88	imaging approach to track daily changes in sound processing from the axons of ACtx neurons
89	that project to the inferior colliculus (IC) ^{28,29} . We describe rapid adjustments in corticocollicular
90	(CCol) response gain that offset a loss of peripheral input following noise-induced cochlear
91	synaptic damage.
92	
93	Results
93 94	Results <u>Axons of ACtx corticocollicular projection neurons can have other downstream targets</u>
94	Axons of ACtx corticocollicular projection neurons can have other downstream targets
94 95	<u>Axons of ACtx corticocollicular projection neurons can have other downstream targets</u> <u>throughout the forebrain</u>
94 95 96	Axons of ACtx corticocollicular projection neurons can have other downstream targets throughout the forebrain Layer (L) 5 pyramidal cells are the canonical "broadcast" neurons of the cortex, with far-
94 95 96 97	Axons of ACtx corticocollicular projection neurons can have other downstream targets throughout the forebrain Layer (L) 5 pyramidal cells are the canonical "broadcast" neurons of the cortex, with far- ranging projections throughout the neocortex, striatum, amygdala, thalamus, midbrain, and
94 95 96 97 98	Axons of ACtx corticocollicular projection neurons can have other downstream targets throughout the forebrain Layer (L) 5 pyramidal cells are the canonical "broadcast" neurons of the cortex, with far- ranging projections throughout the neocortex, striatum, amygdala, thalamus, midbrain, and brainstem ^{30,19} . Dual retrograde tracer studies have emphasized that ACtx L5 projections to
94 95 96 97 98 99	Axons of ACtx corticocollicular projection neurons can have other downstream targets throughout the forebrain Layer (L) 5 pyramidal cells are the canonical "broadcast" neurons of the cortex, with far- ranging projections throughout the neocortex, striatum, amygdala, thalamus, midbrain, and brainstem ^{30,19} . Dual retrograde tracer studies have emphasized that ACtx L5 projections to downstream targets are anatomically separate, such that L5 neurons that project to the inferior
94 95 96 97 98 99 100	Axons of ACtx corticocollicular projection neurons can have other downstream targets throughout the forebrain Layer (L) 5 pyramidal cells are the canonical "broadcast" neurons of the cortex, with far- ranging projections throughout the neocortex, striatum, amygdala, thalamus, midbrain, and brainstem ^{30,19} . Dual retrograde tracer studies have emphasized that ACtx L5 projections to downstream targets are anatomically separate, such that L5 neurons that project to the inferior colliculus (CCol) are largely separate from those that project to the lateral amygdala,

underestimating the true prevalence of projection neurons that innervate multiple downstream
 targets. Because tracer injections fill only a fraction of the target nucleus, the entirety of an
 axon projection zone (or portions thereof) could be missed by one of the tracers, leading to
 false negatives. Secondly, dual tracer studies can only identify divergence to a maximum of two
 downstream structures leaving unanswered the possibility that cortical neurons could broadly
 innervate multiple targets²⁰.

While ground truth estimates of projection diversity will ultimately require whole brain 110 reconstructions of individual cells, we used an intersectional virus strategy to determine 111 whether the axons of at least some CCol projection neurons also innervate other structures. 112 This was accomplished by first injecting a canine adeno virus (CAV2), which offers a strong bias 113 for retrograde infection into the IC (n = 2 mice)³⁴⁻³⁶. With cre-recombinase expressed in 114 neurons that project to the IC, we then injected a cre-dependent virus into the ipsilateral ACtx 115 to express a fluorescent marker throughout CCol neuron axon fields. We observed labeled L5 116 cell bodies and strong terminal labeling in the external and dorsal cortex of the IC, as expected 117 (Fig. 1A). Interestingly, we also observed terminal labeling of CCol axon collaterals in the dorsal 118 subdivision of the medial geniculate body (MGB) (Fig. 1A, middle row), caudal regions of the 119 dorsal striatum and the lateral amygdala (Fig. 1A, bottom row). Although well known that L5 120 neurons of ACtx project to each of these targets, the intersectional viral labeling strategy used 121 here suggested that at least some CCol neurons have far-ranging projections to other structures 122 throughout the ipsilateral forebrain. By contrast, CCol axon labeling was sparse in the 123 contralateral cortex, ipsilateral olivary complex and ipsilateral cochlear nucleus (data not 124 shown). With the caveat that an absence of labeling (e.g., double-labeled cell bodies or CCol 125

126	terminals) should be interpreted cautiously, these observations suggest L5 CCol projection
127	neurons may have multiple projections within the ipsilateral forebrain but are largely distinct
128	from the L5 neurons that project to the contralateral hemisphere and brainstem ^{17,33,37} .
129	

130

131 <u>Visualizing sound-evoked activity from CCol neurons</u>

Having established that at least some CCol neurons comprise a broader, widespread 132 133 corticofugal projection that also innervates the auditory thalamus, dorsal striatum and lateral amygdala, we next developed an approach to monitor daily changes in their activity levels (Fig. 134 **1B**). We reasoned that this could be accomplished with calcium imaging, though 2-photon 135 imaging of L5 CCol cell bodies is challenging on account of their depth from the surface and 136 prominent apical dendrites. Instead, we adapted a protocol to express the genetically encoded 137 138 calcium indicator GCaMP6s in the ACtx and then image sound-evoked responses from CCol axons on the dorsal surface of the brain, atop the IC (Fig. 1C)^{28,29}. By implanting custom head-139 restraint hardware and a cranial window³⁸ over the dorsal cap of the IC, we were able to 140 perform daily widefield epifluorescence imaging of CCol axon population activity in awake mice 141 (Fig. 2A). We observed that CCol axon response amplitude increased monotonically with sound 142 level, as estimated from the peak fractional change in GCaMP6s amplitude evoked by a brief 143 (50 ms) broadband noise burst (Fig. 2B-C). By contrast, sound level growth functions were fairly 144 flat when signals were measured from more caudal locations within the imaging window (Fig. 145 **2C**, blue line), demonstrating that responses could not be attributed to non-specific changes in 146

time-locked intrinsic signals or autofluorescence measured from brain areas without GCaMP6sexpression.

149	To assess the stability of CCol response growth functions over time, we repeated the
150	imaging experiment for seven consecutive days in each mouse (n=5). Qualitatively, we
151	observed a fairly consistent monotonic growth in CCol response amplitude, as shown in a
152	representative example mouse (Fig. 2D, top row). Gain describes a change in output per unit
153	change in input (e.g., CCol response amplitude per unit increase in dB SPL). We quantified
154	changes in CCol response gain across the linear portion of the sound level growth function (40-
155	80 dB SPL), as the transformation between the mean CCol response growth measured during
156	the first two imaging sessions ($r_{baseline}$) to the CCol response growth measured on any given
157	day (r_{day}) according to the formula $r_{day} = m \times r_{baseline} + c$. With this approach, the slope of
158	the linear fit (m) describes the multiplicative ($m>1$) or divisive ($m<1$) change in response
159	growth on any given imaging session with respect to the baseline period (Fig. 2D, bottom row).
160	In the absence of any explicit perturbation, we observed that CCol gain changes over a 7-day
161	imaging period were minimal (Two-way repeated measures ANOVA, main effect for imaging
162	session, F = 1.15, p= 0.36; sound level x session interaction term, F=1.34, p = 0.12, n=5, Fig. 2E).
163	

164 <u>Moderate intensity noise exposure damages cochlear afferent synapses</u>

Having established that CCol response gain is relatively stable from one day to the next in a control condition, we next addressed whether and how corticofugal outputs from the ACtx increase response gain to compensate for a loss in peripheral input. Isolating dynamics in central gain is challenging with protocols that induce widespread cochlear damage, because the loss of outer hair cell-based amplification introduces complex changes in cochlear tuning that
 are inextricable from changes arising through central plasticity. For this reason, central gain
 dynamics in intact preparations are most readily studied with hearing loss protocols that
 selectively eliminate cochlear afferent neurons in the spiral ganglion or their peripheral
 synapses onto inner hair cells without inducing permanent changes to cochlear transduction
 and amplification mechanisms.

We implemented a protocol to track changes in the auditory brainstem response (ABR) 175 and a non-invasive measure of outer hair cell function, the distortion product otoacoustic 176 emission (DPOAE), following noise exposure that was calibrated to damage cochlear afferent 177 synapses at the high-frequency base of the cochlea without causing permanent damage to 178 cochlear hair cells³⁹. Following baseline measurements, mice were exposed to a continuous 179 band of octave-wide noise (8-16 kHz at 100 dB SPL) for 2 hours (Fig. 3A). As described in many 180 previous studies⁴⁰, this moderate intensity noise induced a temporary shift in DPOAE and ABR 181 thresholds measured 24 hours after noise exposure before returning to baseline levels when 182 tested again, several weeks later (Repeated measures ANOVA, F > 30, p < 0.00001 for both 183 DPOAE and ABR threshold shift at 24 hours versus 2 weeks, Fig. 3B and Fig. 3C, respectively). 184 Wave 1 of the ABR is generated by Type-I spiral ganglion neurons, where the amplitude 185 is proportional to the number of their intact synapses onto inner hair cells^{39–41}. Prior work has 186 demonstrated that a reduced amplitude of ABR wave 1 can reflect a "hidden" degeneration of 187 primary cochlear afferents that is not detected by standard measurements of DPOAE and ABR 188 threshold shift⁴⁰. We confirmed this observation in our data; 24 hours following noise exposure, 189 ABR wave 1 amplitude was reduced at test frequencies ranging from 11.3 – 32 kHz (Repeated 190

191	Measures ANOVA, Baseline vs. Day 1, F > 12, p < 0.005 for 11.3-32 kHz tones; Fig. 3D gray vs
192	orange). When measured again 2 weeks after noise exposure, a full recovery was observed at
193	low- and mid-frequencies, yet wave 1 amplitude remained significantly reduced at 22.6 and 32
194	kHz (Repeated Measures ANOVA, Baseline vs. 2 weeks, F < 2.1, p > 0.05 for 8-16 kHz; F > 9, p <
195	0.005 for 22.6 and 32 kHz, Fig. 3D, gray vs red). To confirm that reduced ABR wave 1 amplitude
196	was associated with a loss of cochlear afferent synapses, we quantified immunolabeling of
197	auditory nerve synapses onto inner hair cells in the high-frequency base of the cochlea (Fig. 3E-
198	F). We found that approximately 50% of cochlear afferent synapses were eliminated when
199	measured 24 hours after noise exposure or 2 weeks following noise exposure, as reported
200	previously (Synaptic counts were made from 20.77 \pm 0.02 to 21.73 \pm 0.63 inner hair cells per
201	ear in all groups, 3 ears per group, unpaired t-tests, $p < 1 \times 10^{-8}$ for both control vs 24 hours and
202	control vs 2 weeks after correcting for multiple comparisons; Fig. 3G) ⁴² .

203

204 <u>A rapid and sustained increase in corticofugal gain offsets reduced auditory nerve input</u>

205 *following cochlear synaptic damage*

To contrast changes in sound level growth functions measured in the auditory nerve and CCol axons following cochlear synaptopathy (**Fig. 4A**), we tracked the day-to-day changes in wave 1 amplitude and CCol response amplitude evoked by a broadband noise burst before and after moderate noise exposure (**Fig. 4B**). As predicted from cochlear function testing with tone bursts, wave 1 growth functions were depressed following noise exposure and did not recover to baseline levels (**Fig. 4C**). Although CCol gain was pegged to wave 1 in the first hours following noise exposure, we observed that the gain was increased above baseline levels by D2 (2-way repeated measures ANOVA, main effect for imaging session, F > 9, $p < 1 \times 10^{-8}$; imaging session × sound level interaction term, F > 7, p < 0.05, n=10, **Fig. 4D**).

A side-by-side comparison of daily changes in noise-evoked CCol response gain, ABR 215 wave 1 amplitude, and wave 1 threshold highlights the distinct regulation of each signal. The 216 moderate intensity noise exposure protocol reversibly elevates ABR thresholds for 1-2 days, 217 based on transient changes in cochlear biomechanics (Fig. 5A). ABR responses at threshold 218 reflect outer hair cell integrity and activation of low-threshold auditory nerve fibers. The 219 220 moderate intensity noise exposure protocol used here primarily eliminates synapses from higher-threshold auditory nerve fibers onto inner hair cells³⁹. Therefore, a substantial loss of 221 auditory nerve afferent fibers can "hide" behind normal ABR thresholds, but can be reliably 222 223 revealed by measuring the growth of ABR wave 1 amplitude across a range of suprathreshold sound levels^{39,42}. We observed a pronounced loss in ABR wave 1 amplitude hours after noise 224 exposure that reflected the combined loss of auditory nerve synapses and additional transient 225 biomechanical changes that underlie the temporary threshold shift⁴⁰. Suprathreshold response 226 gain in the auditory nerve partially recovered on D1-D2, as the sources of temporary threshold 227 shift reversed, leaving ~60% reduction in the auditory nerve growth slope through D7 that 228 presumably arose from the loss of approximately 50% loss of high-frequency cochlear afferent 229 synapses (Fig. 5B, blue line). 230

Whereas CCol response gain remains stable under control conditions (**Fig. 5B**, gray line), we observed a rapid, bi-phasic change following cochlear synaptopathy, such that CCol response gain was depressed hours following noise exposure but then rose above baseline levels one day later, despite the substantial loss of auditory nerve input (**Fig. 5B**, red line, D2-7).

235	CCol response gain remained elevated for at least 14 days following cochlear synaptopathy,
236	based on a subset of mice that underwent an extra week of daily imaging (Fig. 5C , n = 5). By
237	compiling the estimates of response gain measured in each mouse from each individual imaging
238	session, we confirmed that CCol response gain was reduced by 83.3% hours after noise
239	exposure (ANOVA main effect for group, pairwise comparison for control vs D1, p = 0.00001
240	after correcting for multiple comparisons, Fig. 5D). CCol response gain was significantly
241	elevated above control levels at D2-4, D7-9 and D12-14 time points (78.2%, 38.8% and 60.5%,
242	respectively, p < 0.05 for each pairwise comparison after correcting for multiple comparisons).
243	We found that the CCol gain elevation remained stable over time, as no significant differences
244	were noted in D2-4 to D12-14 or D7-9 to D12-14 contrasts (-9.9% and +15.6%, respectively,
245	pairwise comparisons, $p > 0.39$ for each after correcting for multiple comparisons).
246	
246 247	Discussion
	Discussion Central auditory neurons compensate for a sudden loss of input from the ear by
247	
247 248	Central auditory neurons compensate for a sudden loss of input from the ear by
247 248 249	Central auditory neurons compensate for a sudden loss of input from the ear by increasing intrinsic excitability ^{43,44} and modifying both the sub-unit composition and functional
247 248 249 250	Central auditory neurons compensate for a sudden loss of input from the ear by increasing intrinsic excitability ^{43,44} and modifying both the sub-unit composition and functional response properties of excitatory and inhibitory synapses ^{45–52} . Collectively, these changes
247 248 249 250 251	Central auditory neurons compensate for a sudden loss of input from the ear by increasing intrinsic excitability ^{43,44} and modifying both the sub-unit composition and functional response properties of excitatory and inhibitory synapses ^{45–52} . Collectively, these changes function as a central amplifier that increases the neural gain on diminished afferent inputs from
247 248 249 250 251 252	Central auditory neurons compensate for a sudden loss of input from the ear by increasing intrinsic excitability ^{43,44} and modifying both the sub-unit composition and functional response properties of excitatory and inhibitory synapses ^{45–52} . Collectively, these changes function as a central amplifier that increases the neural gain on diminished afferent inputs from the auditory periphery. At the level of single units or population responses in intact
247 248 249 250 251 252 253	Central auditory neurons compensate for a sudden loss of input from the ear by increasing intrinsic excitability ^{43,44} and modifying both the sub-unit composition and functional response properties of excitatory and inhibitory synapses ^{45–52} . Collectively, these changes function as a central amplifier that increases the neural gain on diminished afferent inputs from the auditory periphery. At the level of single units or population responses in intact preparations, increased central gain can manifest as elevated spontaneous firing rates,

an extreme (> 90%) loss of peripheral afferents that renders the ABR grossly abnormal or
 absent altogether^{41,54–56}.

Increased central gain in the auditory system is sometimes described as a form of 259 homeostatic plasticity, though it remains to be seen how well this label fits. Homeostatic 260 plasticity is a negative feedback process that stabilizes neural activity levels following input 261 perturbations. Homeostatic mechanisms modify excitatory and inhibitory synapses over a 262 period of hours or days to offset input perturbations and gradually restore spiking activity back 263 to baseline levels⁵⁷. Central changes in auditory gain also offset a loss of input, but have an 264 uncertain connection to homeostatic plasticity because studies have largely been based on 265 acute measurements from unspecified cell types in separate deprived and control groups 266 without *ex vivo* analysis of the underlying synaptic changes (but see^{48,49,58}). Recent work in the 267 sensory-deprived somatosensory and visual cortex have identified shifting contributions from 268 Hebbian and homeostatic plasticity mechanisms that drive increased excitability over the time 269 course of deprivation⁵⁹, even between neighboring cell types⁶⁰, most notably in this context 270 between the different types of L5 cortical projection neurons⁶¹. Understanding the mechanisms 271 underlying increased central gain would benefit from the application of chronic 2-photon 272 imaging from identified cell types followed by ex vivo recordings to determine whether 273 underlying synaptic changes reflect homeostatic signaling pathways, Hebbian plasticity 274 pathways, or something else entirely⁶². 275

By monitoring day-to-day changes in the activity of an anatomically defined cortical output neuron before and after sensory deprivation, the data described here provide new insights into the dynamics of compensatory plasticity (despite revealing little about underlying

mechanisms). The time course of the compensatory changes described here are in line with a 279 280 homeostatic process, yet CCol growth functions rebounded above baseline levels and remained elevated through the duration of the experiment and therefore the changes described here 281 were not strictly consistent with a homeostatic plasticity process. Although it is possible that 282 CCol gain enhancement would eventually return to baseline, we recently reported that 283 intracortical inhibition from parvalbumin-expressing (PV) GABAergic interneurons remains 284 significantly depressed relative to pre-exposure baseline levels for as long as 45 days following 285 cochlear synaptopathy⁵⁸, suggesting that the increased response growth functions observed in 286 L5 neurons could remain elevated even at longer recovery times. We found that PV-mediated 287 intracortical inhibition was reduced by as much as 50% over the same 14-day period studied 288 here, during which time we observed a Hebbian-like enhancement of responses to low-289 frequency tones that stimulate undamaged regions of the cochlea. Interestingly, recordings 290 from these unidentified ACtx regular spiking units found that the gain in sound level growth 291 functions were only elevated during the first two days after noise exposure, far shorter than the 292 2 weeks of increased gain observed here in CCol neurons. In the visual cortex, destruction of 293 vestibular inputs leads to a sustained potentiation of L5 outputs to subcortical oculomotor 294 nuclei to enable adaptive behavioral modifications in the optokinetic reflex³⁶. In the 295 somatosensory cortex, removal of the preferred whisker input also induces disinhibition⁵⁹ and 296 potentiation of non-deprived whisker inputs in intrinsic bursting L5 neurons, but not 297 neighboring L5 regular spiking neurons⁶¹. In ACtx, L5 neurons that project to the IC are intrinsic 298 bursting, whereas neighboring L5 neurons that, for example, project to the contralateral 299 hemisphere are regular spiking^{15,17,63}. If the effects of sensory deprivation on L5 neurons in the 300

ACtx parallel descriptions in other sensory cortices, the Hebbian component of plasticity in L5 CCol neurons may be expressed to a higher degree than neighboring cell types, producing a sustained potentiation of responses following sensory deprivation, particularly when PVmediated intracortical inhibition is reduced. Enhanced central gain is a hallmark of central auditory changes following noise-induced

hearing loss, and has been linked to hyper-synchronization, dysrhythmia and associated 306 perceptual disorders including hyperacusis and tinnitus^{53,64}. Tinnitus is more than just a 307 308 perceptual disorder, as subjects often report increased anxiety, stress, and other complex and heterogeneous forms of mood dysregulation^{65,66}. Aberrant activity in human subjects with 309 tinnitus or animal models of tinnitus is observed far beyond the central auditory pathway and 310 has been specifically linked to abnormally strong coupling of an extended network of brain 311 areas including the ACtx, inferior colliculus, striatum and amygdala^{67,68}. As these are the very 312 313 same brain areas innervated by the L5 projection neurons studied here, one clear implication is that the increased sensory gain in these far-ranging ACtx corticofugal output neurons could be a 314 key contributor to driving hyperexcitability and strong functional coupling in a distributed brain 315 network underlying tinnitus. 316

- 317
- 318

Methods

All procedures were approved by the Massachusetts Eye and Ear Infirmary Animal Care and Use Committee and followed the guidelines established by the National Institute of Health for the care and use of laboratory animals.

322

323 Virus injections

324 Adult CBA/CaJ (6-8 weeks) of either sex were anesthetized using isoflurane in oxygen (5% induction; 1.5-2% maintenance), with core body temperature maintained at 36.5°. Virus 325 solution was backfilled into a pulled glass capillary pipette and injected into the target brain 326 area at 15 nl/min using an automated injection system (Stoelting). For CCol axon imaging, we 327 opened two small burr holes in the skull (0.5-1mm diameter each) along the caudal-rostral 328 extent of the squamosal suture that overlies the ACtx. After inserting the pipette 0.5mm into 329 330 the cortex, we then injected 250 nl of undiluted AAV5.Syn.GCaMP6s.WPRE.SV40 (UPENN Vector Core). The virus incubated for approximately 3-4 weeks before imaging began. For axon 331 tracing experiments, we injected 500 nl of undiluted CAV2-Cre 0.5 mm deep at three equally 332 spaced sites along the medial-lateral extent of the IC (Universitat Autònoma de Barcelona 333 Vector Core) in two C57BL6/J mice (aged 6-8 weeks). The following day, we injected a cre-334 dependent GCaMP virus into the ACtx using the same injection protocol listed above 335 336 (AAV1.Flex.GCaMP6s) and allowed the virus to incubate for 4-6 weeks before sectioning the brain. Following injections, a dab of antibiotic ointment was applied to each burr hole and the 337 craniotomies were sealed with a UV-curing cement (Flow-It ALC Flowable Composite). The 338 339 wound was closed and mice were injected with an analgesic (Buprenex, 0.05 mg/kg and Meloxicam, 0.1 mg/kg) before recovering in a warmed chamber. 340

341

342 Chronic imaging preparation

343 *Cranial windows:* Glass cover slips were first etched in piranha solution (H_2O_2 mixed with 344 H_2SO_4 in a 3:1 ratio) and stored in 70% ethanol. A 4mm diameter cover slip was centered and

affixed to a 3mm cover slip (#1 thickness, Warner Instruments) using a transparent, UV-cured
adhesive (Norland Products). Windows were stored in double deionized water and rinsed with
sterile saline before use.

Cranial window implantation surgery: Animals were anesthetized with isoflurane in 348 oxygen (5% induction; 1.5-2% maintenance). Dexamethasone sodium phosphate was 349 administered to reduce brain edema (2 mg/kg, intramuscular). After removing the periosteum 350 from the dorsal surface of the skull, an etchant (C&B Metabond) was applied for 30 sec to 351 create a better adhesive surface. A custom titanium headplate (iMaterialise) was bonded to the 352 dorsal surface of the skull with dental cement (C&B Metabond). In accordance with a published 353 protocol on chronic cranial window surgical procedure³⁸, we made a 3mm circular craniotomy 354 atop the IC with a pneumatic dental drill and diamond burr (head diameter 1/10 mm, 355 NeoDiamond – Microcopy Dental). Once liberated, the bone flap was removed with great care 356 357 and continuously irrigated with saline to avoid rupturing the pial vessels underneath. The cranial window was then lowered into place using a 3-D manipulator and bonded to the 358 surrounding regions of the skull to create a hermetic seal. Post-operative injections of Buprenex 359 (0.05 mg/kg) and Meloxicam (0.1 mg/kg) were administered and the mice were allowed to 360 recover in a warmed chamber. Imaging began 5-7 days following recovery from surgery. 361

362

363 <u>Widefield calcium imaging</u>

Calcium imaging was performed in awake, head-fixed mice inside of a light- and soundattenuating chamber mounted to an isolated optical table (Thorlabs). Blue light illumination was supplied in epifluorescence configuration from a broadband arc lamp (Lumen Dynamics)

367	passed through a filter cube housing an excitation filter (482 \pm 9 nm), dichroic mirror (reflection
368	band: 350 – 488 nm; transmission band: 502 – 950 nm] and emission filter (520 \pm 14 nm,
369	Thorlabs) and focused on the surface of the IC with a $4x$ / 0.13 NA objective (Nikon). Images
370	(1392 x 1040 pixels) were acquired with a 1.4 Megapixel CCD camera and transferred to a PC
371	via a Gigabit Ethernet interface to a framegrabber PCI card (Thorlabs). Image acquisition was
372	hardware-triggered at 10 frames/s using a TTL pulse train synched to stimulus generation.
373	
374	Stimulus presentation
375	Stimuli were generated with a 24-bit digital-to-analog converter (National Instruments
376	model PXI 4461) and presented via a free-field tweeter (Vifa) positioned 10 cm from the left
377	(contralateral) ear canal. Stimuli were calibrated before recording with a wideband ultrasonic
378	acoustic sensor (Knowles Acoustics, model SPM0204UD5). Broadband noise bursts (50 ms
379	duration, 4 ms raised cosine onset/offset ramps) were pseudorandomly presented between 20-
380	80 dB SPL in 10 dB increments (50 repetitions per stimulus). Trial duration was 2 s.
381	
382	Imaging data analysis
383	Images were first downsampled by a factor of 4 using bicubic interpolation. A region of
384	interest (ROI) was positioned over an IC region with maximum CCol fluorescence that did not
385	include surface blood vessels. Exact ROI dimensions varied between mice depending on blood
386	vessel patterns and craniotomy location (100 x 100 \pm 50 pixels) but was fixed in size and
387	position across imaging sessions for a given animal. Population GCaMP responses were
388	computed from the mean of all pixels within the ROI.

389	After averaging across trials, we computed the pre-stimulus fluorescence level (F_0) as
390	the mean fluorescence across a 0.5 s period immediately prior to stimulus onset. We then
391	expressed the fractional change in fluorescence ((F- F_0)/ F_0) for each frame (F). For each sound
392	level, response amplitude was defined as the peak of the fractional change response, expressed
393	as a percent change from baseline. A linear model was used to regress the response amplitudes
394	on each day to the mean response amplitude from the first two baseline imaging sessions. The
395	regression was limited to the region of linear growth (40-80 dB SPL) to improve the goodness of
396	fit (R ²) across all conditions. The slope of this least-squares fit (m) was used to quantify the
397	degree of divisive (m < 1) or multiplicative (m > 1) gain changes across imaging days.
398	
399	Acoustic over-exposure
400	Mice were exposed to an octave band of noise (8-16 kHz) presented at 100 dB SPL for 2
400	
401	hrs. During exposures, animals were awake and unrestrained within a 12 x 16 x 16 cm,
401	hrs. During exposures, animals were awake and unrestrained within a 12 x 16 x 16 cm,
401 402	hrs. During exposures, animals were awake and unrestrained within a 12 x 16 x 16 cm, acoustically transparent cage. The cage was suspended directly below the horn of the sound-
401 402 403	hrs. During exposures, animals were awake and unrestrained within a 12 x 16 x 16 cm, acoustically transparent cage. The cage was suspended directly below the horn of the sound- delivery loudspeaker in a reverberant chamber. Noise calibration to target SPL was performed
401 402 403 404	hrs. During exposures, animals were awake and unrestrained within a 12 x 16 x 16 cm, acoustically transparent cage. The cage was suspended directly below the horn of the sound- delivery loudspeaker in a reverberant chamber. Noise calibration to target SPL was performed
401 402 403 404 405	hrs. During exposures, animals were awake and unrestrained within a 12 x 16 x 16 cm, acoustically transparent cage. The cage was suspended directly below the horn of the sound- delivery loudspeaker in a reverberant chamber. Noise calibration to target SPL was performed immediately before each exposure session.
401 402 403 404 405 406	hrs. During exposures, animals were awake and unrestrained within a 12 x 16 x 16 cm, acoustically transparent cage. The cage was suspended directly below the horn of the sound- delivery loudspeaker in a reverberant chamber. Noise calibration to target SPL was performed immediately before each exposure session.
401 402 403 404 405 406 407	hrs. During exposures, animals were awake and unrestrained within a 12 x 16 x 16 cm, acoustically transparent cage. The cage was suspended directly below the horn of the sound- delivery loudspeaker in a reverberant chamber. Noise calibration to target SPL was performed immediately before each exposure session. <u>Cochlear function tests</u> Mice were anesthetized with ketamine and xylazine (100/10 mg/kg for

earphones (CUI CDMG15008–03A) and an electret condenser microphone (Knowles FG-23339PO7) coupled to a probe tube. Stimuli were calibrated in the ear canal in each mouse before
recording.

ABR stimuli were tone bursts (8, 11.3, 16, 22.6 and 32 kHz) or white noise bursts (0-50 kHz), 5 ms duration with a 0.5 ms rise-fall time delivered at 27 Hz, and alternated in polarity to the left ear. Intensity was incremented in 5 dB steps, from 20-80 dB SPL. ABRs were measured with subdermal needle electrodes positioned beneath both pinna (+ and -) and the base of the tail (ground). Responses were amplified (gain = 10,000), filtered (0.3–3 kHz), and averaged (1024 repeats per level). ABR threshold was defined as the lowest stimulus level at which a repeatable wave 1 could be identified.

DPOAEs were measured in the ear canal using primary tones with a frequency ratio of 421 1.2, with the level of the f2 primary set to be 10 dB less than f1 level, incremented together in 5 422 423 dB steps. The 2f1-f2 DPOAE amplitude and surrounding noise floor were extracted. DPOAE threshold was defined as the lowest of at least two consecutive f_2 levels for which the DPOAE 424 amplitude was at least 2 standard deviations greater than the noise floor. All treated animals 425 underwent rounds of DPOAE and ABR testing with tones before, 2 days and approximately 14 426 days after noise exposure. ABR to white noise bursts were measured every other day beginning 427 ether 2 days before noise exposure (n = 3) or the day before noise exposure (n=3), for a total of 428 429 4-5 ABR test sessions for a given mouse.

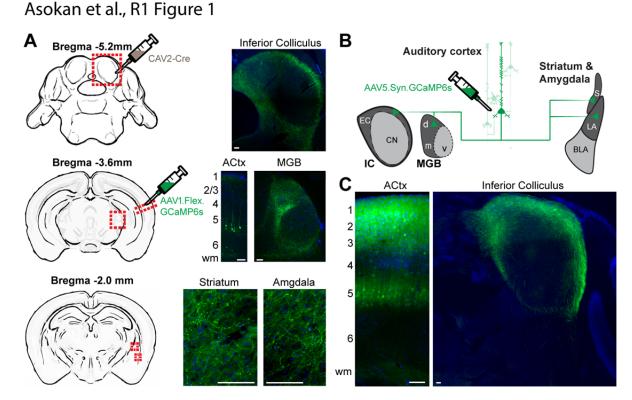
430

431 <u>Visualization of corticofugal axons</u>

432	Deeply anesthetized mice were perfused transcardially with 0.01M phosphate buffered
433	saline (pH = 7.4) followed by 4% paraformaldehyde in 0.01M PBS. Brains were removed and
434	stored in 4% paraformadehyde for 12 hrs before transferring to cryoprotectant (30% sucrose in
435	0.01M PBS) for at least 48 hrs. Sections (40 μm thick) were cut using a cryostat (Leica), mounted
436	on glass slides and coverslipped using Vectashield Mounting Medium with DAPI (Vector Labs).
437	ACtx cell bodies and distribution of CCol axons were visualized and photographed using an
438	epifluorescence microscope (Leica).
439	
440	Cochlear histology and synapse quantification
441	Cochleae were dissected and perfused through the round window and oval window
442	with 4% paraformaldehyde in phosphate-buffered saline, then post-fixed in the same solution
443	as described elsewhere ^{39,41} . Cochleae were dissected into half-turns for whole-mount
444	processing. Immunostaining began with a blocking buffer (PBS with 5% normal goat or donkey
445	serum and 0.2-1% Triton X-100) for 1 to 3 hrs at room temperature and followed by incubation
446	with a combination of the following primary antibodies: 1) rabbit anti-CtBP2 (BD Biosciences) at
447	1:100, 2) rabbit anti-myosin VIIa (Proteus Biosciences) at 1:200, 3) mouse anti-GluR2 (Millipore)
448	at 1:2,000. Lengths of cochlear whole mounts were measured and converted to cochlear
449	frequency. Confocal z-stacks from each ear were obtained in the inner hair cell area using a
450	high-resolution glycerin-immersion objective (63x) and x3.18 digital zoom with a 0.25 μm z-
451	spacing on a Leica SP5 confocal microscope. For each stack, the z-planes imaged included all
452	synaptic elements in the x-y field of view. Image stacks were imported to image-processing

453	software (Amira, Visage Imaging), where synaptic ribbons, glutamate receptor patches, and
454	inner hair cells were counted.
455	
456	Statistical analyses
457	Statistical analyses were performed in Matlab (Mathworks). Descriptive statistics are
458	provided as mean \pm SEM. Inferential statistics between control and noise-exposed samples
459	were performed with two-tailed tests of unmatched samples (Between subjects ANOVA or
460	unpaired t-tests). Statistical contrasts over the noise exposure period were performed with a
461	repeated measures ANOVA. All post-hoc pairwise comparisons were corrected with Bonferroni-
462	Holm to account for type-I error inflation due to multiple comparisons. All data can be made
463	available upon reasonable request.
464	
465	Acknowledgements
466	We thank the UAB Vector Core, GENIE Program, the Janelia Farm Research Campus, and Penn
467	Vector Core in the Gene Therapy Program of the University of Pennsylvania for providing the
468	GCaMP6s and CAV2-Cre reagents for this project. We thank AE Hight for designing the head
469	fixation hardware. We thank J. Dahmen, K. Kuchibhotla, and C. Harvey for guidance on the
470	surgical preparation for chronic imaging. We thank S. Kujawa and A. Parthasarathy for their
471	contributions to cochlear synapse quantification. This work was supported by NIDCD R01
472	DC009836 (D.B.P), NIDCD F32 DC015376 (R.S.W.) and a Herchel Smith Graduate fellowship
473	(M.A.)

- 474
- 475


References 476 477 478 1. Robinson, B. L. & McAlpine, D. Gain control mechanisms in the auditory pathway. Curr. Opin. Neurobiol. 19. 402–407 (2009). 479 Willmore, B. D. B., Cooke, J. E. & King, A. J. Hearing in noisy environments: noise 480 2. invariance and contrast gain control. J. Physiol. 592, 3371-3381 (2014). 481 Salvi, R. et al. Inner hair cell loss disrupts hearing and cochlear function leading to 3. 482 sensory deprivation and enhanced central auditory gain. Frontiers in Neuroscience 10, 483 (2017). 484 Guinan, J. J. Olivocochlear efferents: Their action, effects, measurement and uses, and 4. 485 the impact of the new conception of cochlear mechanical responses. *Hearing Research* in 486 487 press (2017). 5. Winer, J. A. Decoding the auditory corticofugal systems. *Hear. Res.* **212**, 1–8 (2006). 488 Diamond, I. T., Jones, E. G. & Powell, T. P. S. The projection of the auditory cortex upon 489 6. the diencephalon and brain stem in the cat. Brain Res. 15, 305–340 (1969). 490 7. Terreros, G. & Delano, P. H. Corticofugal modulation of peripheral auditory responses. 491 Front. Syst. Neurosci. 9, 1–8 (2015). 492 Lesicko, A. M. H. & Llano, D. A. Impact of peripheral hearing loss on top-down auditory 493 8. processing. Hear. Res. 343, 4–13 (2017). 494 Robinson, B. L., Harper, N. S. & McAlpine, D. Meta-adaptation in the auditory midbrain 9. 495 under cortical influence. Nat. Commun. 7, 13442 (2016). 496 Malmierca, M. S., Anderson, L. A. & Antunes, F. M. The cortical modulation of stimulus-10. 497 specific adaptation in the auditory midbrain and thalamus : a potential neuronal 498 correlate for predictive coding. Front. Syst. Neurosci. 9, 1–14 (2015). 499 500 11. Winkowski, D. E. & Knudsen, E. I. Top-down gain control of the auditory space map by gaze control circuitry in the barn owl. Nature 439, 336-339 (2006). 501 Suga, N. & Ma, X. Multiparametric corticofugal modulation and plasticity in the auditory 502 12. system. Nat. Rev. Neurosci. 4, 783–794 (2003). 503 Nakamoto, K. T., Jones, S. J. & Palmer, A. R. Descending projections From auditory cortex 13. 504 modulate sensitivity in the midbrain to cues for spatial position. J. Neurophysiol. 99, 505 2347-2356 (2008). 506 14. Ryugo, D. K. & Weinberger, N. M. Corticofugal modulation of the medial geniculate body. 507 Exp. Neurol. 51, 377–391 (1976). 508 Slater, B. J., Willis, A. M. & Llano, D. A. Evidence for layer-specific differences in auditory 509 15. corticocollicular neurons. Neuroscience 229, 144–154 (2013). 510 511 16. Llano, D. A. & Sherman, S. M. Differences in intrinsic properties and local network connectivity of identified layer 5 and layer 6 adult mouse auditory corticothalamic 512 neurons support a dual corticothalamic projection hypothesis. Cereb. Cortex 19, 2810-513 2826 (2009). 514 Joshi, A. et al. Cell-specific activity-dependent fractionation of layer 2/3-5B excitatory 17. 515 signaling in mouse auditory cortex. J. Neurosci. 35, 3112–3123 (2015). 516 Rock, C., Zurita, H., Wilson, C. & Apicella, A. J. An inhibitory corticostriatal pathway. *eLife* 18. 517 **5,** 1–17 (2016). 518 19. Harris, K. D. & Shepherd, G. M. G. The neocortical circuit: themes and variations. Nat. 519

520		Neurosci. 18, 170–181 (2015).
521	20.	Han, Y. et al. The logic of single-cell projections from visual cortex. Nature 556 , 51–56
522		(2018).
523	21.	Bajo, V. M., Nodal, F. R., Moore, D. R. & King, A. J. The descending corticocollicular
524		pathway mediates learning-induced auditory plasticity. <i>Nat. Neurosci.</i> 13 , 253–260
525		(2010).
526	22.	Homma, X. N. Y. et al. A role for auditory corticothalamic feedback in the perception of
527		complex sounds. <i>J. Neurosci.</i> 37, 6149–6161 (2017).
528	23.	Torii, M., Hackett, T. A. A., Rakic, P., Levitt, P. & Polley, D. B. B. EphA signaling impacts
529		development of topographic connectivity in auditory corticofugal systems. Cereb. Cortex
530		23, 775–785 (2013).
531	24.	Guo, W. et al. A corticothalamic circuit for dynamic switching between feature detection
532		and discrimination. <i>Neuron</i> 95, 180–194 (2017).
533	25.	Zingg, B. et al. AAV-mediated anterograde transsynaptic tagging: mapping
534		corticocollicular input-defined neural pathways for defense behaviors. Neuron 93, 33–47
535		(2017).
536	26.	Xiong, X. R. et al. Auditory cortex controls sound-driven innate defense behaviour
537		through corticofugal projections to inferior colliculus. Nat. Commun. 6, 7224 (2015).
538	27.	Znamenskiy, P. & Zador, A. M. Corticostriatal neurons in auditory cortex drive decisions
539		during auditory discrimination. Nature 497, 482–485 (2013).
540	28.	Rothermel, M. & Wachowiak, M. Functional imaging of cortical feedback projections to
541		the olfactory bulb. <i>Front. Neural Circuits</i> 9, 73 (2014).
542	29.	Barnstedt, O., Keating, P., Weissenberger, Y., King, A. J. & Dahmen, J. C. Functional
543		microarchitecture of the mouse dorsal inferior colliculus revealed through In vivo two-
544		photon calcium imaging. <i>J. Neurosci.</i> 35, 10927–39 (2015).
545	30.	Harris, K. D. & Mrsic-flogel, T. D. Cortical connectivity and sensory coding. <i>Nature</i> 503,
546		51–58 (2013).
547	31.	King, V. M. B. and A. J. Cortical modulation of auditory processing in the midbrain. Front.
548		Neural Circuits 6, 1–12 (2013).
549	32.	Moriizumi, T. & Hattori, T. Pyramidal cells in rat temporoauditory cortex project to both
550		striatum and inferior colliculus. Brain Res. Bull. 27, 141–144 (1991).
551	33.	Doucet, J. R., Molavi, D. L. & Ryugo, D. K. The source of corticocollicular and corticobulbar
552		projections in area Te1 of the rat. Exp. brain Res. 153, 461–466 (2003).
553	34.	Soudais, C., Laplace-Builhe, C., Kissa, K. & Kremer, E. J. Preferential transduction of
554		neurons by canine adenovirus vectors and their efficient retrograde transport in vivo.
555		Fed. Am. Soc. Exp. Biol. 15, 2283–2285 (2001).
556	35.	Schneider, D. M., Nelson, A. & Mooney, R. A synaptic and circuit basis for corollary
557		discharge in the auditory cortex. <i>Nature</i> 513, 189–194 (2014).
558	36.	Liu, B., Huberman, A. D. & Scanziani, M. Cortico-fugal output from visual cortex promotes
559		plasticity of innate motor behaviour. <i>Nature</i> 538, 383–387 (2016).
560	37.	Games, K. D. & Winer, J. A. Layer V in rat auditory cortex: Projections to the inferior
561		colliculus and contralateral cortex. <i>Hear. Res.</i> 34, 1–26 (1988).
562	38.	Goldey, G. J. et al. Removable cranial windows for long-term imaging in awake mice. Nat.
563		Protoc. 9, 2515–2538 (2014).

564	39.	Kujawa, S. G. & Liberman, M. C. Adding insult to injury: cochlear nerve degeneration
565	59.	after 'temporary' noise-induced hearing loss. J. Neurosci. 29 , 14077–14085 (2009).
566	40.	Liberman, M. C. & Kujawa, S. G. Cochlear synaptopathy in acquired sensorineural hearing
567	40.	loss: Manifestations and mechanisms. <i>Hear. Res.</i> 349 , 138–147 (2017).
568	41.	Chambers, A. R. <i>et al.</i> Central gain restores auditory processing following near-complete
569	71.	cochlear denervation. <i>Neuron</i> 89, 1–13 (2016).
570	42.	Liberman, L. D., Suzuki, J. & Liberman, M. C. Dynamics of cochlear synaptopathy after
571		acoustic overexposure. J. Assoc. Res. Otolaryngol. 16, 205–219 (2015).
572	43.	Yang, S., Su, W. & Bao, S. Long-term, but not transient, threshold shifts alter the
573		morphology and increase the excitability of cortical pyramidal neurons. J. Neurophysiol.
574		108, 1567–1574 (2012).
575	44.	Li, S., Kalappa, B. I. & Tzounopoulos, T. Noise-induced plasticity of KCNQ2/3 and HCN
576		channels underlies vulnerability and resilience to tinnitus. <i>eLife</i> 4 , 1–23 (2015).
577	45.	Sarro, E. C., Kotak, V. C., Sanes, D. H. & Aoki, C. Hearing loss alters the subcellular
578		distribution of presynaptic GAD and postsynaptic GABAA receptors in the auditory
579		cortex. <i>Cereb. Cortex</i> 18, 2855–2867 (2008).
580	46.	Kotak, V. C. et al. Hearing loss raises excitability in the auditory cortex. J. Neurosci. 25,
581		3908–18 (2005).
582	47.	Takesian, A. E., Kotak, V. C. & Sanes, D. H. Presynaptic GABAB receptors regulate
583		experience-dependent development of inhibitory short-term plasticity. J. Neurosci. 30,
584		2716–2727 (2010).
585	48.	Yang, S., Weiner, B. D., Zhang, L. S., Cho, SJ. SJ. & Bao, S. Homeostatic plasticity drives
586		tinnitus perception in an animal model. Proc. Natl. Acad. Sci. 108, 14974–14979 (2011).
587	49.	Sturm, J. J., Zhang-Hooks, YX., Roos, H., Nguyen, T. & Kandler, K. Noise trauma induced
588		behavioral gap detection deficits correlate with reorganization of excitatory and
589		inhibitory local circuits in the inferior colliculus and are prevented by acoustic
590		enrichment. J. Neurosci. 37, 602–17 (2017).
591	50.	Sametsky, E. A., Turner, J. G., Larsen, D., Ling, L. & Caspary, D. M. Enhanced GABAA-
592		mediated tonic inhibition in auditory thalamus of rats with behavioral evidence of
593	F 4	tinnitus. <i>J. Neurosci.</i> 35, 9369–9380 (2015).
594	51.	Scholl, B. & Wehr, M. Disruption of balanced cortical excitation and inhibition by acoustic
595	гэ	trauma. J. Neurophysiol. 100, 646–656 (2008).
596	52.	Takesian, A. E., Kotak, V. C., Sharma, N. & Sanes, D. H. Hearing loss differentially affects
597		thalamic drive to two cortical interneuron subtypes. <i>J. Neurophysiol.</i> 110, 999–1008 (2013).
598 599	53.	Auerbach, B. D., Rodrigues, P. V & Salvi, R. J. Central gain control in tinnitus and
600	55.	hyperacusis. Front. Neurol. 5, (2014).
601	54.	Lobarinas, E., Salvi, R. & Ding, D. Insensitivity of the audiogram to carboplatin induced
602	54.	inner hair cell loss in chinchillas. <i>Hear. Res.</i> 1–8 (2013).
603	55.	Zeng, F. G. Perceptual consequences of disrupted auditory nerve activity. J. Neurophysiol.
604	20.	93, 3050–3063 (2005).
605	56.	Schuknecht, H. F. & Woellner, R. C. Hearing losses following partical section of the
606	-	cochlear nerve. <i>Laryngoscope</i> 63 , 441–465 (1953).
607	57.	Turrigiano, G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing

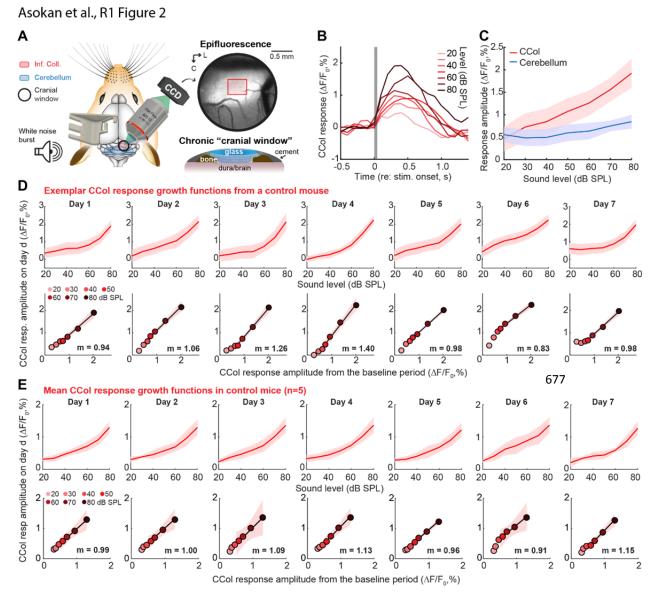

600		neuronal function. Cold Spring Harb. Perspect. Biol. 4, a005736–a005736 (2012).
608 609	58.	Resnik, J. & Polley, D. B. Fast-spiking GABA circuit dynamics in the auditory cortex predict
	56.	recovery of sensory processing following peripheral nerve damage. <i>eLife</i> 6 , (2017).
610	59.	
611	59.	Li, L. <i>et al.</i> Rapid homeostasis by disinhibition during whisker map plasticity. <i>Proc. Natl.</i>
612	60	Acad. Sci. U. S. A. 111, 1616–21 (2014).
613	60.	Barnes, S. J. <i>et al.</i> Subnetwork-specific homeostatic plasticity in mouse visual cortex in
614	C1	vivo. <i>Neuron</i> 86, 1290–1303 (2015).
615	61.	Greenhill, S. D., Ranson, A. & Fox, K. Hebbian and homeostatic plasticity mechanisms in
616	C2	regular spiking and intrinsic bursting cells of cortical layer 5. <i>Neuron</i> 88 , 539–552 (2015).
617	62.	Keck, T. <i>et al.</i> Integrating Hebbian and homeostatic plasticity: the current state of the
618		field and future research directions. <i>Philos. Trans. R. Soc. B Biol. Sci.</i> 372, 20160158
619	62	(2017).
620	63.	Sun, Y. J., Kim, Y. J., Ibrahim, L. A., Tao, H. W. & Zhang, L. I. Synaptic mechanisms
621		underlying functional dichotomy between intrinsic-bursting and regular-spiking neurons
622	C A	in auditory cortical layer 5. <i>J. Neurosci.</i> 33 , 5326–5339 (2013).
623	64.	Sedley, W. <i>et al.</i> Intracranial mapping of a cortical tinnitus system using residual
624	CF	inhibition. <i>Curr. Biol.</i> 25, 1208–1214 (2015).
625	65.	Kraus, K. S. & Canlon, B. Neuronal connectivity and interactions between the auditory
626	66	and limbic systems. Effects of noise and tinnitus. <i>Hear. Res.</i> 288 , 34–46 (2012).
627	66.	Bhatt, J. M., Bhattacharyya, N. & Lin, H. W. Relationships between tinnitus and the
628	C7	prevalence of anxiety and depression. <i>Laryngoscope</i> 127 , 466–469 (2017).
629	67.	Chen, Y. C. <i>et al.</i> Tinnitus and hyperacusis involve hyperactivity and enhanced
630	60	connectivity in auditory-limbic-arousal-cerebellar network. <i>eLife</i> 4 , 1–19 (2015).
631	68.	Leaver, A. M. <i>et al.</i> Intrinsic network activity in tinnitus investigated using functional MRI.
632		Hum. Brain Mapp. 37, 2717–2735 (2016).
633		
634		
635		
636		
637		
638		
639		
640		
641		
642		
643 644		
645 646		
646 647		
647 648		
648 649		
649 650		
650 651		
160		

Figure 1. Auditory corticofugal neurons that innervate the inferior colliculus have other widespread targets throughout the forebrain. (A) A canine adenovirus vector with efficient retrograde transport (CAV2) was injected into the IC to express cre-recombinase in neurons that project into the injection zone. A cre-dependent AAV was then injected into the ipsilateral ACtx to express a fluorescent marker throughout the entire axon field of CCol neurons. Photomicrographs show the expected labeling of layer 5 ACtx neurons and their IC axon terminals, with additional strong axon labeling in the dorsal nucleus of the medial geniculate body, lateral amygdala, and posterior regions of the dorsal striatum. wm = white matter. (B) Schematic of virus strategy used for in vivo Ca2+ imaging in corticofugal axons. EC and CN = external cortex and central nucleus of the IC, respectively. MGB subdivisions d, v and m = dorsal, ventral and medial, respectively. BLA = basolateral amygdala. S = striatum. (C) Strong labeling of L5 pyramidal neuron cell bodies, apical dendrites and CCol axon terminals are observed approximately 5 weeks after injection of the GCaMP6s virus in ACtx. All scale bars = 0.1 mm.

678

Figure 2. Sound-evoked corticocollicular axon response increases monotonically with sound 679 level and remains stable over one week of imaging. (A) A chronic preparation for 680 epifluorescence imaging of GCaMP6s in CCol axons via a cranial window in awake, head-fixed 681 mice. Red rectangle denotes region of interest for CCol imaging. L = lateral. C = caudal. (B) Time 682 course of mean fractional change in the CCol response amplitude evoked by a 50 ms white 683 noise burst from a single imaging session. Gray box denotes stimulus timing and duration. (C) 684 The monotonic growth of CCol peak response amplitude falls off steeply when the region of 685 interest is shifted away from the IC. Data represent mean \pm SEM. (**D**) *Top:* CCol response 686 growth functions from a single mouse across seven daily imaging sessions. Data represent 687 mean \pm SEM. *Bottom:* Scatterplots depict the mean CCol response amplitude at each sound 688 level measured from the first two imaging sessions (x-axis, defined as baseline) against the CCol 689 response amplitude measured on the day specified (y-axis). The slope (m) of the linear fit 690 provides an estimate of daily changes in response gain, where m = 1 indicates a matched 691 response growth relative to baseline, m < 1 = a divisive flattening of the growth function, and m 692 > 1 = multiplicative enhancement relative to baseline. Shading represents the 95% confidence 693 interval of the fit. (E) As per D, averaged across all control mice (n=5). 694

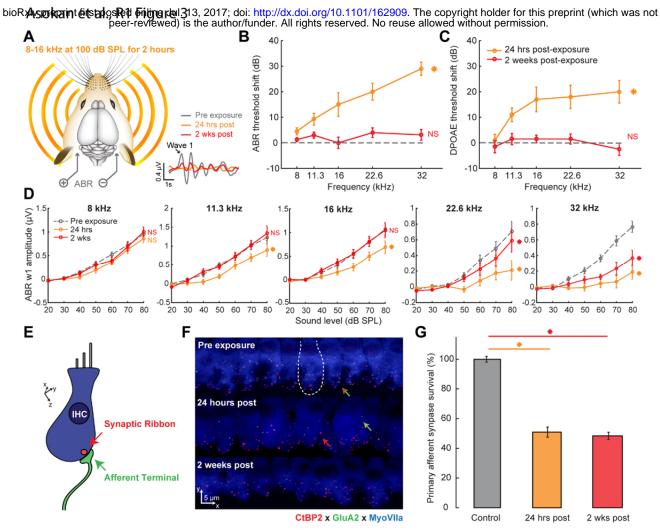
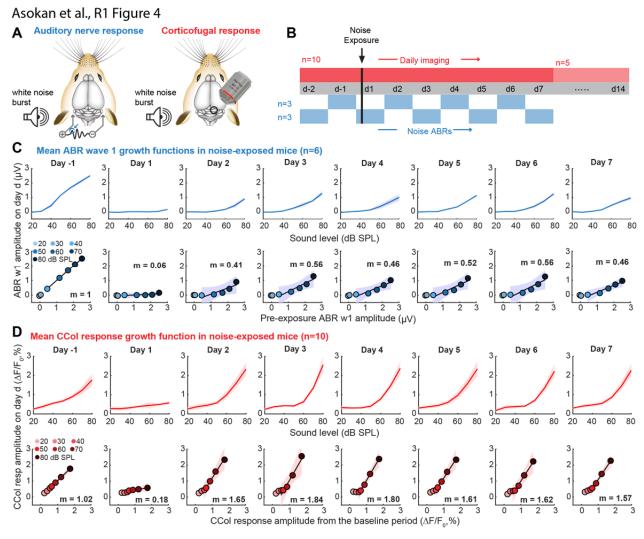
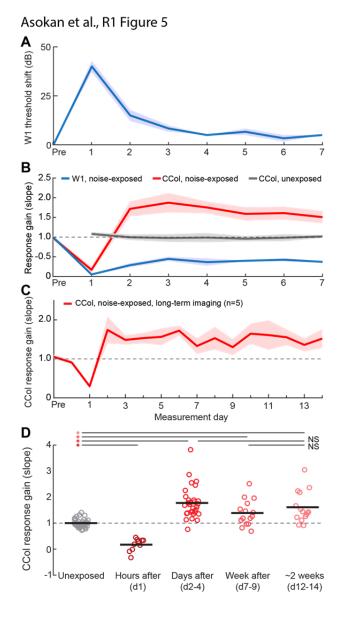




Figure 3. Moderate intensity noise exposure induces a temporary shift in cochlear and 695 brainstem response thresholds but a permanent loss of auditory nerve afferent fibers. (A) 696 697 Schematic of noise exposure and auditory brainstem response (ABR) measurement protocols. Example ABR waveforms evoked with a 32 kHz tone bursts before, 24 hours after and 2 weeks 698 after noise exposure. (B-C) Elevations in ABR and distortion product otoacoustic emission 699 (DPOAE) thresholds (B and C, respectively) are observed 1 day following noise exposure 700 (orange) but have returned to baseline 2 weeks following noise exposure (red). (D) ABR wave 1 701 (w1) growth functions. NS = no significant difference with pre-exposure. Asterisk = significant 702 main effect for ABR amplitude between pre-exposure and post-exposure. Data represent mean 703 \pm SEM, n = 10 mice in pre-exposure and 24 hrs post conditions, n = 8 mice for 2 wks post. (E-F) 704 Schematic (E) and actual (F) visualizations of cochlear nerve afferent synapses on inner hair 705 cells. Red and green arrows depict orphaned presynaptic ribbons and postsynaptic GluA2 706 receptor patches, respectively. Combined red and green arrow identifies primary afferent 707 708 cochlear synapses as appositions of the CtBP2 and GluA2 pre- and post-synaptic markers, 709 respectively. Dashed white line depicts the boundary of a single inner hair cell. (G) Quantification of cochlear afferent synapses in control mice, 24 hours and 2 weeks following 710 noise exposure 22.6 kHz region of the cochlear frequency map. Synaptic counts are expressed 711 as percent survival by comparison to normative standards from age- and strain-matched 712 mice^{41,42}. Asterisk = significant difference with an unpaired t-test after correcting for multiple 713 comparisons. Synaptic counts were made from 20.77 - 21.73 individual inner hair cells at a fixed 714 position in the cochlear frequency map between the 20 - 30 kHz region in each ear, 3 ears per 715 group). 716

718 Figure 4. Opposing changes in auditory nerve and corticocollicular response growth functions 719 following cochlear synaptopathy. (A) Auditory nerve growth functions were measured under 720 anesthesia every other day according to the change in ABR wave 1 (blue circle) amplitude to 721 white noise bursts of varying level (n=6). CCol response growth functions were measured daily 722 in a separate cohort of awake mice (n=10) also using white noise bursts, per previous figures. 723 (B) ABR wave 1 and CCol responses were both measured for two days (d) prior to moderate 724 725 noise exposure and for seven days following noise exposure. In a subset of noise-exposed mice (n=5), CCol imaging was extended for an additional week after noise exposure. (C-D) As per Fig. 726 2E, ABR wave 1 (C) and CCol response (D) growth functions (top rows) and scatterplots of linear 727 fits for baseline vs post-exposure growth functions (bottom rows) are provided for all mice. 728 Data represent mean \pm SEM. Linear fits of the five highest sound levels are illustrated by the 729 solid black line with corresponding slope (m) and 95% confidence interval (blue and red 730 shading). 731 732

⁷³³

735 Figure 5. ABR threshold recovery belies ongoing dynamics in auditory nerve and

corticocollicular response gain. (A) Moderate noise exposure induces a temporary shift in the 736 ABR wave 1 threshold to white noise bursts that resolved after two days. (B) Daily changes in 737 738 response gain for CCol measurements in unexposed control (gray, n = 5) and noise-exposed (red, n =10) mice are contrasted with daily changes in the response gain of ABR wave 1 in noise-739 exposed mice (blue, n = 6). In all cases, gain is calculated as the slope of the fit line applied to 740 sound level growth functions measured during baseline and subsequent days. (C) Daily changes 741 742 in CCol response gain over an extended 2-week imaging period in a subset of noise-exposed mice (n=5). For A-C, Data represent mean \pm SEM. (D) Gain estimates from individual imaging 743 744 sessions in unexposed control mice (gray) are contrasted with gain estimates measured during 745 the first imaging session following noise exposure (hours after), or during 3-day epochs occurring on d2-4, d7-9 or d12-14. Thick horizontal bars represent sample means. Individual 746 circles represent all individual data points. Asterisks and NS denote statistically significant 747 differences or lack thereof, respectively, for pairwise comparisons indicated by thin horizontal 748 lines after correcting for multiple comparisons. 749

⁷³⁴