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Natural stimuli exhibit dynamics on a wide range of timescales. For 
example, movements of the eye cause visual scenes to fluctuate rapidly 
when objects are viewed at a distance, but more slowly when viewed 
from close up1. Similarly, odors can fluctuate rapidly when plumes 
are riding on a stiff breeze, but more slowly near surfaces and in low 
wind2,3. Thus, sensory systems need ways to transmit information on 
a broad range of temporal scales.

Transmitting broadband signals is not trivial, as many common 
biophysical features of neural systems can act as temporal filters that 
limit transmission to specific frequency ranges4–6. In particular, short-
term synaptic depression is a ubiquitous phenomenon that imposes 
a bandpass filter on information transmission. Synapses that exhibit 
short-term depression preferentially transmit rapid modulations in the 
presynaptic firing rate while filtering out slow or sustained rate modula-
tions7–11. Such synapses are common near the sensory periphery12–15.

Are there mechanisms in vivo that allow sensory systems to over-
come the temporal filters imposed by short-term synaptic depression? 
Several studies in the retina, brainstem and cortex have shown that a 
sensory synapse can exhibit strong short-term depression when it is 
examined in a reduced experimental preparation, but can nonethe-
less transmit broadband signals in vivo or in a semi-intact prepara-
tion16–20. The mechanisms that might promote broadband synaptic 
transmission in vivo are poorly understood. Presynaptic inhibition is 
a likely candidate, as synaptic depression can be reduced by tonic acti-
vation of presynaptic GABA receptors in vitro21,22. In vivo, however, 
GABAergic neurons are activated dynamically, and so the manner in 
which inhibition shapes the frequency characteristics of a synapse will 
depend on how excitatory and inhibitory neurons are coactivated by 
dynamic stimuli23,24.

We investigated how a sensory synapse in vivo can transmit infor-
mation on many timescales. We focused on the first synaptic relay of 
the Drosophila olfactory system, the synapse between olfactory recep-
tor neurons (ORNs) and projection neurons (PNs) in the antennal 
lobe (Fig. 1a). We describe two mechanisms that enable broadband 
transmission at this synapse. In the first mechanism, each presynaptic 
spike elicits two kinetically distinct excitatory postsynaptic currents 
that transmit presynaptic firing rate changes on different timescales. 
In the second mechanism, presynaptic inhibition dynamically modu-
lates the properties of synaptic transmission to produce a more accu-
rate representation of the stimulus time course across a wide range of 
frequencies. Because two kinetic components are found at a variety of 
excitatory synapses, and because presynaptic inhibition is common in 
many circuits, these mechanisms should have broad relevance for how 
neural systems can transmit information on a range of timescales.

RESULTS
ORN-to-PN synapses show prominent short-term depression12 (Fig. 1b), 
which is an intrinsic property of these synapses (Supplementary  
Fig. 1). Taken at face value, this would predict that PNs should respond 
only transiently to prolonged odor stimuli. Nonetheless, PNs in other 
insect species can generate sustained responses to odors25 while also 
encoding rapidly fluctuating stimuli with high fidelity26,27.

To illustrate this mismatch, we compared the PN odor responses 
predicted by a simple model of ORN-to-PN synapses to actual PN 
odor responses. We focused on PN membrane potential rather than 
PN firing rate, as we were primarily interested in synaptic dynamics  
and because firing rate tracks the membrane potential in these  
neurons (Supplementary Fig. 2).
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Sensory stimuli fluctuate on many timescales. However, short-term plasticity causes synapses to act as temporal filters,  
limiting the range of frequencies that they can transmit. How synapses in vivo might transmit a range of frequencies in spite of 
short-term plasticity is poorly understood. The first synapse in the Drosophila olfactory system exhibits short-term depression, but 
can transmit broadband signals. Here we describe two mechanisms that broaden the frequency characteristics of this synapse. 
First, two distinct excitatory postsynaptic currents transmit signals on different timescales. Second, presynaptic inhibition 
dynamically updates synaptic properties to promote accurate transmission of signals across a wide range of frequencies. 
Inhibition is transient, but grows slowly, and simulations reveal that these two features of inhibition promote broadband synaptic 
transmission. Dynamic inhibition is often thought to restrict the temporal patterns that a neuron responds to, but our results 
illustrate a different idea: inhibition can expand the bandwidth of neural coding.
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To model ORN-to-PN synapses, we began with a well-studied 
model of synaptic depression7,8. In this model, the amplitude of the 
unitary postsynaptic conductance decrements by a factor f after each 
spike and recovers with a time constant τ between spikes. This model 
produced a good fit to the depression dynamics of recorded excitatory 
postsynaptic currents (EPSCs; Fig. 1b,c).

To predict PN odor responses, we constructed a model PN that 
receives input from a population of model ORNs, with firing rates 
drawn from our data (Fig. 1d). The amplitude of the synaptic conduct-
ance resulting from each ORN spike was specified by the depression 
model (that is, the fitted parameters f and τ). Synaptic conductances 
from all ORN-to-PN synapses were summed and the resulting change 
in PN membrane potential was determined by modeling the PN as 
a leaky passive integrator with properties fit to published data12.  
All of the parameters of the model were fit to data (Online Methods 
and Supplementary Fig. 3).

As we would expect for a depressing synapse, this model pre-
dicted transient responses to long odor pulses (Fig. 1d). In contrast,  
real PNs produced more sustained responses to long odor pulses 
(Fig. 1e,f). Moreover, real PNs were able to respond continuously to 
dense fluctuating stimuli, whereas the model predicted that responses 
should attenuate after the first few hundred milliseconds (Fig. 1g).  
Notably, the PN types used to fit the parameters of the model  
(f and τ) were a subset of the PN types used to measure odor responses 
(Online Methods).

This comparison makes clear that the assumptions of this simple 
depression model are incorrect. In particular, the model assumes 
that there is one timescale of synaptic dynamics and that the param-
eters specifying synaptic dynamics (f and τ) are constant over time.  
We therefore investigated each of these assumptions experimentally.

Two components of postsynaptic currents
To better understand the dynamics of synaptic transmission, we exam-
ined isolated spontaneous EPSCs from PNs. Each spontaneous EPSC 
arises from a single ORN spike28, and any dynamics present in these 

EPSCs must therefore arise from unitary ORN-to-PN connections.  
Individual spontaneous EPSCs displayed two decay rates (Fig. 2a). 
These two kinetic components were also visible in EPSCs evoked by 
direct electrical stimulation of ORN axons (Fig. 2b). We observed 
that, when ORN axons were stimulated repetitively, the fast compo-
nent depressed more quickly than the slow component (Fig. 2c).

Typical of excitatory central synapses in insects, EPSCs at these syn-
apses are mediated by nicotinic acetylcholine receptors12,29. Nicotinic 
currents with distinct kinetics have been isolated pharmacologically 
from insect central neurons30,31. We therefore asked whether the two 
kinetic components at ORN-to-PN synapses might also be pharma-
cologically separable. We found that low concentrations of curare 
preferentially blocked the fast component of EPSCs evoked by elec-
trical stimulation (Fig. 2d). The slow component was preferentially 
occluded by the nicotinic partial agonist imidacloprid (IMI; Fig. 2d 
and Supplementary Fig. 4).

The two pharmacological components of EPSCs showed different 
amounts of short-term depression. In response to a 10-Hz spike train, 
the slow (curare resistant) component depressed more slowly than did 
the fast (IMI resistant) component (Fig. 2d). We quantified the rate 
of depression for the two components by fitting each with the param-
eters f and τ. For the IMI-resistant component, these parameters were 
f = 0.77 and τ = 1,006 ms, whereas for the curare-resistant component, 
these parameters were f = 0.91, τ = 629 ms, indicating a much slower 
rate of depression. These distinctions were even more pronounced 
during a high-frequency train that was in the range of odor-evoked 
ORN firing rates32 (50 Hz; Fig. 2e,f). These experiments suggest that 
ORN-to-PN synapses contain two types of nicotinic receptor with 
distinct kinetics. Alternatively, the two components might represent 
different states of the same receptor.
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Figure 1  Mismatch between predictions of a simple depression model 
and PN odor responses. (a) Schematic of the antennal lobe circuit. All 
of the ORNs that express the same odorant receptor project to the same 
glomerulus (dashed line), where they make synapses with PNs and LNs.  
In vivo patch-clamp recordings were performed in GFP+ PNs that arborized 
in specific glomeruli. ORN spikes could be elicited using either odor or 
direct electrical stimulation of ORN axons. (b) EPSCs evoked by electrical 
stimulation of ORN axons at 10 Hz (average of seven trials, for a PN in 
glomerulus DM6). (c) Mean normalized EPSC amplitudes during a 10-Hz 
train (±s.e.m., n = 19 PNs from 19 flies in glomerulus DM6 or VM2).  
Line is a fit of the simple synaptic depression model (equation (1);  
f = 0.78 and τ = 893 ms). (d) A simple model of synaptic depression 
predicts that PN responses to odor should be transient. Top, 20-ms and 
2-s odor stimuli (note different timescales). Middle, firing rates measured 
in ORNs presynaptic to glomerulus VM7 (n = 4 ORNs in 4 flies). Bottom, 
predicted PN membrane potential. Note the transient response to the 2-s 
stimulus. The model PN is described by equations (1) and (2) (Online 
Methods and Supplementary Fig. 3). (e) Top, example PN responses 
(single trials, PNs in glomerulus DM6 or VM7). The 2-s stimulus elicited 
a sustained depolarization and sustained spiking (inset). Bottom, mean 
(averaged across 17 PNs from 17 flies in glomerulus DM6, VM2 or VM7, 
±s.d. across PNs). When many PN recordings were averaged together, 
spikes made a negligible contribution. (f) Model prediction overlaid on 
the data. Baselines (pre-stimulus) are aligned to facilitate comparison. 
Note that the model predicted a transient response, but the data showed 
a sustained response. (g) Model versus data for a dense sequence of 
odor pulses (odor valve is open 50% of the time). Bottom, traces overlaid 
with baselines aligned. Again, the model predicted a transient response, 
whereas the data showed a sustained response.
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To illustrate the consequences of these findings, we modified our 
model so that the EPSC was composed of two components fit to our 
pharmacological data (Supplementary Fig. 3). This two-component 
model produced a more sustained response than the single- 
component model, reflecting the contribution of the slow compo-
nent (Fig. 2g,h). The fast component rose more rapidly than the slow 
component and contributed to the rapid rise time of the response 
(Fig. 2h). Thus, the two EPSC components encode distinct temporal 
features of odor stimuli, allowing the synapse to transmit a wider 
range of stimulus dynamics.

Inhibition promotes faithful encoding of stimulus dynamics
Thus far we have assumed that the parameters that specify synaptic 
dynamics (f and τ) are themselves constant over time. However, the 
parameters governing depression may be under dynamic control, as 
presynaptic inhibition at ORN terminals can decrease the rate of syn-
aptic depression, both in the antennal lobe33 and in the olfactory bulb, 
the vertebrate analog of the antennal lobe34–36. We therefore asked 
whether GABAergic inhibition modulates the dynamics of synaptic 
transmission in vivo to produce changes in PN response dynamics.

To block inhibition, we bath-applied CGP54626 (a GABAB antago-
nist) together with picrotoxin (an antagonist of inhibitory GABAA 
and GluCl receptors). Both antagonists are required to block inhibi-
tion in this circuit33,37. This is mainly a presynaptic manipulation, as 
inhibition in this circuit acts primarily on ORN axon terminals, with 
a smaller effect on PN dendrites33,38. When inhibition was blocked, 
responses to brief stimuli were substantially prolonged (Fig. 3a–c).  
In addition, responses to long stimuli showed significantly more decay 
(Fig. 3a,b,d). Thus, inhibition truncates responses to brief stimuli, but 
stabilizes responses to long stimuli.

Blocking inhibition depolarized the mean PN membrane potential 
even in the absence of odors, likely by increasing the amount of spon-
taneous excitatory synaptic input onto PNs. To control for the effects 
of depolarization, we injected hyperpolarizing current to return the 
PN to its original membrane potential; this did not alter the dynamics 
of PN odor responses or the effect of blocking inhibition (Fig. 3e). 
This result implies that blocking inhibition directly affects synaptic 
conductances in PNs.

To examine the role of inhibition in encoding more naturalistic 
stimuli, we presented long trains of odor pulses that ranged from very 
sparse to very dense (Fig. 4a). When inhibition was blocked, responses 
to sparse pulses were prolonged (Fig. 4b), whereas responses to dense 
pulse trains decayed more steeply over time (Fig. 4c). Thus, inhibi-
tion truncates responses to brief and sparse stimuli, but also stabilizes 
responses to long or dense stimuli.

A common way to describe a neural code is to calculate the linear 
filter that relates the stimulus to the response. We can estimate the 
linear filter in multiple ways. One is to measure the impulse response, 
the response to a brief stimulus shorter than the integration time of 
the system. We measured the impulse response by averaging together 
all PN responses to 20-ms odor pulses that were separated by at least 
400 ms in our trains of sparse stimuli (Fig. 4d). Blocking inhibition 
prolonged the impulse response (Fig. 4e). This result implies that 
inhibition normally keeps the impulse response narrow.

A different method of estimating the linear filter is by cross-
correlating the time course of the response with the time course of 
our densest stimulus, where the odor was on 50% of the time (Online 
Methods). This filter can then be used to predict the response to a  
20-ms odor pulse, the ‘effective impulse response’ for a dense stimulus 
(Fig. 4f). This analysis revealed that the effective impulse response was 
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Figure 2  Two distinct components of EPSCs at ORN-to-PN synapses.  
(a) Examples of spontaneous EPSCs recorded with ORNs intact  
showing a slow component (arrow). These examples come from  
two PNs that had unusually low spontaneous EPSC rates, which  
better show isolated events, but the shapes of these EPSCs are  
typical of other recordings. (b) Single EPSC evoked by electrical 
stimulation of ORN axons in a DM6 PN (black, average of eight trials)  
and fit of a bi-exponential decay to this trace (orange). (c) EPSCs  
evoked by electrical stimulation of ORN axons at 10 Hz (mean of  
13 PNs from 13 flies in glomerulus DM6 or VM2, all traces normalized to 
the amplitude of the first EPSC before averaging). Arrow indicates  
slow component. The first EPSC is overlaid in gray on the last EPSC 
to show how the fast component decays more quickly over the train as 
compared with the slow component. (d) A low concentration of curare 
(5–10 µM) mainly blocked the fast component (mean across 7 PNs from 
7 flies). A low concentration of IMI (50–100 nM, n = 6 PNs from 6 flies) 
mainly blocked the slow component. Control traces (gray) are reproduced 
from b. The effects of curare were mimicked by methyllycaconitine  
(100 nM) or α-bungarotoxin (1 µM, data not shown). (e) Data are 
presented as in c and d for 50-Hz trains. (f) Percentage of charge transfer 
remaining in curare or IMI (mean ± s.e.m.). The two drugs together 
blocked 70 ± 12% of the evoked current during the 50-Hz stimulus  
(mean ± s.e.m., n = 8 PNs from 8 flies). (g) Model PN responses to  
20-ms and 2-s odor stimuli. PNs were modeled with the fast or slow 
components alone, or with both components together. Top right,  
the model response to the 20-ms stimulus on an expanded timescale.  
Inputs to the model were measured firing rates from ORNs in glomerulus 
VM7. For the fast component, the EPSC shape was taken from data 
recorded in IMI, and depression parameters f and τ were fit to the decay 
at 10 Hz in IMI. Similarly, for the slow component, the EPSC shape and 
depression parameters were fit to data recorded in curare. (h) Data are 
presented as in g, but with the onset of model responses shown on an 
expanded timescale, and with traces vertically offset so that the mean 
baseline (pre-odor) membrane potential was the same in all cases.
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narrower during a denser stimulus (Fig. 4d,f). Moreover, when the stim-
ulus was dense, blocking inhibition did not prolong the response, but  
instead slightly decreased the positive component of the response 
relative to the negative part (Fig. 4g). This ratio dictates the response 
to a sustained stimulus: if the positive component of the filter is large 
compared with the negative component, a sustained stimulus will 
produce a net response that is also large and positive.

Together, these analyses indicate that there is not a fixed relation-
ship between the stimulus time course and the response time course. 
Instead, this relationship changes depending on the statistics of the 
stimulus: sparse stimuli produce large and prolonged responses and 
dense stimuli produce briefer and smaller responses. Inhibition 
counteracts these effects, creating a more consistent relationship 
between the stimulus time course and the response time course. 
Specifically, inhibition enforces brief responses to sparse and brief 
stimuli, and sustained responses to dense and sustained stimuli. These 
results suggest that inhibition is recruited differently depending on 
the statistics of the stimulus. To test this hypothesis, we next recorded 
the responses of inhibitory local neurons (LNs).

Odors elicit transient activity in inhibitory neurons
To examine how LNs are recruited by stimuli with different tempo-
ral properties, we made in vivo cell-attached recordings from a large 
population of LNs (45 in total). We sampled a diverse population of 
LNs by labeling three different subsets of LNs with GFP and recording 
randomly in these subsets of cells (Online Methods). LNs exhibited 
diverse response dynamics (Fig. 5a). However, certain dynamical 
features were typical of most LNs. First, nearly all of the LNs that we 
recorded were spontaneously active (4.6 ± 2.8 spikes per s, mean ± 
s.d. across cells), consistent with our finding that blocking inhibition 
depolarized PNs even in the absence of an odor stimulus (Fig. 3a,b). 
Second, odor-evoked activity in LNs was highly transient, with a sharp 
burst of spikes at odor onset (Fig. 5a,b). Most LNs did not respond in 
a sustained manner to long odor pulses. Indeed, activity was actually 
suppressed during long stimuli in many LNs (Fig. 5a).

More complex odor stimuli produced similar results. Sparse, brief 
odor pulses elicited large and transient increases in LN activity.  
In contrast, a dense train of intermittent pulses recruited LNs mainly 
at the onset of the train (Fig. 5c). In this respect, LNs differ from PNs, 
which showed sustained responses to dense pulse trains (Fig. 1g).

To compare LN and PN response dynamics directly, we recorded 
odor-evoked synaptic currents from both cell types in whole-cell 
voltage-clamp mode at a holding potential near rest (−60 mV). 
Because LNs and PNs have different membrane time constants, this 
approach provided the most accurate comparison of the dynamics 
of synaptic input in the two cell types. We found that odor-evoked 
inward current was more transient in LNs than in PNs (Fig. 5d–f). 
Inward current in LNs was transient even after pharmacological 
blockade of inhibition (Fig. 5g), indicating an intrinsic difference 
between excitatory synapses onto LNs versus PNs. As we will argue 
below, the transience of LN spiking is relevant to understanding how 
inhibition stabilizes responses to long stimuli.

Inhibition grows slowly relative to local neuron spiking
The timing of inhibition depends not only on the dynamics of LN 
spiking, but also on the relationship between LN spiking and the 
effects of inhibition on target cells. We noted that LN firing rates 
peaked rapidly after odor onset, but the functional effects of inhibi-
tion peaked ~100 ms later in our PN data. The effects of inhibition 
also outlasted the odor-evoked increase in average LN firing rates 
(Fig. 6a,b). These observations suggest that there is some slow process 
between LN spiking and the effects of inhibition on target cells.

Thus far, we have measured the functional effects of inhibition by 
comparing PN odor responses before and after pharmacological block-
ade of GABA receptors. To obtain a more direct measure of the time 
course of functional inhibition, we expressed channelrhodopsin-2  
in a large subset of LNs. This allowed us to directly elicit LN spiking 
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Figure 3  Inhibition truncates responses to brief pulses and stabilizes 
responses to long pulses. (a) Response of an example PN (glomerulus 
DM6) to 20-ms and 2-s stimuli before and after blocking inhibition with 
picrotoxin (5 µM) and CGP54626 (50 µM). Blocking inhibition prolonged 
the response to the short pulse and caused the response to the long 
pulse to decay more steeply over time. The decay in the PN response to 
a long pulse likely reflects the combined effects of short-term synaptic 
depression and ORN adaptation (Discussion). (b) Mean response of 17 
PNs to the same stimuli (glomerulus DM6, VM2 or VM7, recorded from  
17 different flies). Control data are reproduced from Figure 1e.  
(c) Duration of the response to a short (20 ms) odor pulse at half-maximal 
amplitude. Mean duration increased significantly after blocking inhibition 
(P = 7.0 × 10−6, t test). Each pair of connected symbols represents a PN. 
(d) Ratio of the late response to the peak response for a long (2 s) odor 
pulse. The late response is defined as the depolarization from baseline 
during the last 100 ms. The mean late/peak ratio decreased significantly 
when inhibition was blocked (P = 3.8 × 10−4, t test). (e) Mean PN 
response to the long stimulus in experiments where additional negative 
holding current was applied after blocking inhibition to bring the baseline 
membrane potential to the same level as control (n = 8 PNs from 8 flies). 
Blocking inhibition significantly decreased the mean late/peak ratio for 
these cells (P = 2.5 × 10−3, t test).
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with light and compare the time course of LN spiking to the time 
course of inhibition in target cells.

Although light-evoked firing rates rose rapidly in LNs (Fig. 6c), 
inhibition measured in PNs progressed more slowly (Fig. 6d–f). 
LNs primarily inhibit PNs indirectly by inhibiting ORN axon termi-
nals33,38. Because ORNs spike spontaneously and produce spontane-
ous EPSCs in PNs28, spontaneous EPSCs in PNs provide a sensitive 
measure of the time course of presynaptic inhibition. The time course 
of inhibition could be fit with an alpha function with a time constant 
of about 25 ms. These data provide direct evidence that LNs have slow 
effects on ORN neurotransmitter release.

The dynamics of inhibition are functionally relevant
Our findings highlight two dynamical features of inhibition in this 
circuit. First, LN spiking is transient. Second, the effects of inhibition 
grow slowly relative to LN spiking. How might these two features be 
important for recapitulating the functional effects of inhibition?

To address this question, we added inhibition to our model. 
Presynaptic inhibition at ORN-to-PN synapses decreases both EPSC 
amplitude and the rate of synaptic depression in experimental data33. 
To model these effects, we divided ORN firing rates (recorded in sepa-
rate experiments) by a parameter, I(t), that represents the time-varying 
amplitude of inhibition. This procedure essentially models inhibition 
as a decrease in presynaptic release probability. I(t) was estimated by 
taking the average spiking activity of all LNs and filtering this signal 
with a 25-ms alpha function to mimic the slow growth of inhibi-
tion relative to LN spiking. As in our previous models, ORN-to-PN 
synapses in this model had both fast and slow components, although 

we modified how we fit the parameters of the slow component  
(see Supplementary Fig. 5, Online Methods and Discussion).

Similar to our experimental results (Fig. 7a), we found that adding 
inhibition to our model truncated responses to brief odor pulses and 
stabilized responses to long pulses (Fig. 7b). Moreover, adding inhi-
bition to the model decreased baseline (pre-odor) activity relative to 
the steady-state odor response. In this sense, inhibition increased the 
signal-to-noise ratio of postsynaptic activity. We observed a similar 
suppression of baseline activity relative to steady state in our experi-
mental results (Fig. 7a).

In this model, there are two distinct reasons why inhibition stabi-
lizes neural activity. First, because inhibition is transient, it prefer-
entially cancels excitation in the epoch when excitation is strongest 
(that is, when ORN-to-PN synapses are strongest and when ORN 
firing rates are highest). Moreover, because inhibition is presynaptic, 
it decreases the rate of synaptic depression, thereby preserving syn-
aptic resources (for example, vesicles or receptors) for later epochs. 
This latter effect was clearest in the evolution of the amplitude of the 
unitary postsynaptic conductance over time (Fig. 7c).

What would happen if odors evoked sustained rather than transient 
activity in LNs? When we clamped LN firing rates at their peak level 
throughout the odor stimulus, the PN response ran down during a 
long stimulus (Fig. 7d).

Is it important that inhibition grows slowly? When we filtered LN 
activity less strongly (thereby making the time course of inhibition 
more similar to the time course of LN activity), inhibition began to act 
on the synapse before the PN response had peaked, and so the peak 
response was attenuated and response onset was slowed (Fig. 7e).

Figure 4  Inhibition truncates responses to 
sparse stimuli and stabilizes responses to 
dense stimuli. (a) Mean response to fluctuating 
stimuli with different densities, before and 
after blocking inhibition with picrotoxin and 
CGP54626 (n = 17 PNs from 17 flies). The odor 
valve was randomly selected to be on or off in 
each 20-ms interval, and the mean percentage 
of time that the odor valve was open varied from 
1% to 50%. (b) Duration of the response to a 
short pulse (at half-maximal amplitude) after 
blocking inhibition, normalized to the duration 
before blocking inhibition. Values are plotted for 
each stimulus density. To compute these values, 
we selected responses to a relatively isolated 
pulse late in the random train for each stimulus 
(gray boxes in a). During sparse stimuli, 
blocking inhibition prolonged odor responses, 
but this effect decreased with stimulus density. 
(c) Ratio of peak depolarization during the last 
second of the stimulus to peak depolarization 
during the first second of the stimulus. During 
dense stimuli, blocking inhibition caused 
responses to decay more with time. (d) Mean 
impulse response for sparse pulse trains (same 
PNs as in a). The impulse response for each 
PN was calculated as the mean response to all 
20-ms pulses separated by at least 400 ms in 
the random pulse trains. (e) Duration at half-
maximal amplitude of the impulse response 
for each PN. Blocking inhibition significantly 
increased response duration (P = 5.2 × 10−5, 
t test). (f) Mean effective impulse responses for dense pulse trains (same PNs as in a, inset schematizes positive and negative components). Here the 
effective impulse response was calculated by cross-correlating the densest stimulus (50%) with the membrane potential to obtain a linear filter, then 
using this filter to predict the response to a 20-ms odor pulse. (g) The ratio of the positive and negative components of the linear filter, before and after 
blocking inhibition. The linear filter was obtained by cross-correlating the densest stimulus (50%) with the membrane potential. This ratio decreased 
significantly (P = 1.4 × 10−3) after blocking inhibition. Each point represents a PN.
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What would change if inhibition were postsynaptic rather than 
presynaptic? To examine this question, we replaced presynaptic 
inhibition in the model with an inhibitory conductance in the PN 
that reversed at −70 mV. As before, inhibition at each time point was 
proportional to I(t). Postsynaptic inhibition decreased the size of the 
sustained PN odor response relative to the pre-odor baseline (Fig. 7f),  
whereas presynaptic inhibition had the opposite effect (Fig. 7b). This 
occurs because postsynaptic inhibition is strongest when the PN is 
depolarized and sits far from the reversal potential for the inhibi-
tory current; in contrast, presynaptic inhibition has a stronger effect 
on low presynaptic firing rates than on high presynaptic firing rates 
(Supplementary Fig. 6).

This model clarifies the role of inhibitory dynamics in shaping 
the time course of PN responses. Because inhibition, like excita-
tion, is transient, it cancels out many of the transient distortions 
produced by synaptic depression and ORN adaptation. However, 
because inhibition grows slowly, it preserves the rapid onset of the 
response when the stimulus onset is also rapid. Dynamic inhibi-
tion therefore allows the circuit to encode both rapid and sustained 
stimuli more accurately.

Inhibition flattens the frequency response of the circuit
We have described synaptic and circuit mechanisms that counter-
act short-term depression (Fig. 8a). Given that short-term synaptic 
depression acts as a bandpass temporal filter7,8, we would expect 
these mechanisms to also broaden the frequency response of the 
circuit, making postsynaptic response amplitude more constant 
across a range of stimulus timescales. Modeling allows us to test this 
idea by probing responses to stimuli that are difficult to generate 
experimentally. To model LN spiking responses to novel stimuli, we  
used a formalism similar to the feedforward component of our PN 
model (Online Methods). LN spike rates were then translated into 
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rates evoked by sparse odor pulse trains (20-ms pulses at 3.2-s intervals) 
and dense odor pulse trains (20-ms pulses at 100-ms intervals). Sparse 
pulses elicited reliable bursts in LN spiking, but the dense stimulus 
elicited a pronounced burst of LN spiking only at the onset of the train. 
(d) Mean synaptic current in LNs (n = 22 LNs from 22 flies) evoked 
by a long (2 s) odor stimulus and recorded in voltage-clamp mode at a 
command potential of −60 mV. (e) Data are presented as in d for PNs 
(n = 9 PNs from 8 flies, all from glomerulus DM6, VM2 or VM7). (f) The 
ratio of the synaptic current late in the response to a long pulse (the last 
200 ms of the stimulus period) to the peak synaptic current. This ratio 
was significantly higher in PNs than in LNs (P = 1.7 × 10−3, t test). 
(g) Synaptic currents in LNs before and after blocking inhibition (with 
picrotoxin and CGP54626), each averaged across the same five LNs.
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a time-varying inhibitory signal (by smoothing with a 25-ms alpha 
function) as before.

We used this approach to examine four models: a model with the 
fast component of excitation only, with slow excitation only, with 
both fast and slow excitation, and with inhibition added. We began by 
examining the model responses to the sparse and dense pulse stimuli 
shown in Figure 4. In this case, the inputs to the model were measured 
ORN firing rates.

Brief and sparse odor pulses (Fig. 8b) highlighted the importance of 
fast excitation: the fast component allowed the PN to respond quickly 
to a pulse onset and to faithfully resolve pulses in quick succession. 
Adding slow excitation prolonged the PN response, but subsequently 
adding inhibition made PN responses more transient again (Fig. 8b). 
In this regime, inhibition improved encoding of high-frequency stim-
uli insofar as it shortened the response to brief stimuli.

Conversely, a long train of dense odor pulses (Fig. 8c) highlighted 
the importance of slow excitation. Here, the slow component provided 
long-lasting excitation, whereas the fast component produced a more 
transient response. Adding inhibition increased the stability of the PN 
response over the duration of the long dense train because inhibition 
selectively canceled the strong early response. In this regime, inhibi-
tion improved encoding of low-frequency stimuli by creating more 
stable responses to prolonged stimuli.

To quantify the contribution of inhibition in these different regimes, 
we calculated impulse responses on the basis of the model output.  
As in our data (Fig. 4), the shape of the impulse response in the 
absence of inhibition depended on stimulus statistics, with dense 
stimuli producing smaller and briefer responses than sparse stimuli  
(Fig. 8d,e). One reason why this occurs is that the slow component 

of ORN-to-PN synapses decays slowly, so the ratio of fast to slow 
increases over time. Also similar to our data (Fig. 4), the effects of 
inhibition depended on stimulus statistics. In a sparse regime, modeled 
inhibition decreased the duration of the impulse response (from 145 
to 90 ms at half-maximum). In a dense regime, it increased the ratio 
of positive to negative filter components (from 1.25 to 1.41), meaning 
that a sustained stimulus produces a larger sustained response.

Together, these observations suggest that inhibition enables the 
model PN to encode stimulus time course more consistently across 
frequencies. To test this idea explicitly, we probed our model with 
sinusoidally modulated stimuli at different frequencies (Fig. 8f). We 
modeled ORN responses to these stimuli using a linear filter extracted 
from ORN data (Online Methods and Supplementary Fig. 3). The 
slow component of excitation followed this stimulus rather faithfully, 
whereas the fast component was recruited only transiently during the 
rising phase of the sinusoid. Adding inhibition cancelled the transient 
of excitation, producing a more sinusoidal response.

To quantify the ability of each model to follow sinusoidal stimuli, 
we measured the power in the response at the frequency of the stimu-
lus (Fig. 8g). As expected, low frequencies were best encoded by the 
slow component of excitation, whereas high frequencies were best 
encoded by the fast component. In a model with both components, 
inhibition decreased power at intermediate frequencies and slightly 
increased power at both high and low frequencies. Thus, the net effect 
of inhibition was to flatten the frequency response of the system.

DISCUSSION
Near the sensory periphery, synapses must fulfill two competing 
demands. On the one hand, they need to signal rapidly, as reaction 

Figure 7  The dynamics of inhibition are 
functionally relevant. (a) Mean ORN responses 
to a short (20 ms) and long (2 s) stimulus  
(n = 4 ORNs presynaptic to glomerulus VM7). 
Data are reproduced from Figure 1d. Shown 
below are mean PN responses with inhibition 
intact and blocked (n = 7 PNs postsynaptic to 
glomerulus VM7; this is a subset of the data in 
Fig. 3b). (b) Model PN responses to the same 
stimuli with and without inhibition. Inhibition 
was transient, slower than LN spiking and 
presynaptic. Shown below each PN response 
is the time course of inhibition (parameter 
I(t) in the model). Inhibition truncated the 
response to the short stimulus and generated 
a more stable response to the long stimulus; 
it also hyperpolarized the pre-odor baseline. 
(c) Time course of the amplitude of the unitary 
postsynaptic conductance for fast and slow 
components of ORN-to-PN synapses (parameter 
A(t) in equation (3)). Solid traces show this 
parameter with inhibition and dashed traces 
show this parameter without inhibition. 
Without inhibition, synapses were weaker both 
before and during the stimulus. (d) Model PN 
responses with transient inhibition (black trace, 
same as b) compared with persistent inhibition 
(I(t) was clamped at its peak throughout the 
stimulus). Persistent inhibition caused the PN 
response to decay during the long stimulus. 
(e) Model PN responses with inhibition that is slow (LN firing rate smoothed with a 25-ms alpha function, same as b) versus inhibition that is faster 
(LN firing rate smoothed with 5-ms alpha function). Inset, onset of the response to the long stimulus on an expanded timescale. When the onset of 
inhibition was faster, inhibition began to act before the initial PN depolarization was complete. (f) Model PN responses with presynaptic inhibition 
(black trace, same as b) versus postsynaptic inhibition. I(t) was the same in both models, and the gain of postsynaptic inhibition was set so the level of 
pre-odor hyperpolarization was matched. Postsynaptic inhibition decreased the sustained odor response relative to the pre-odor baseline.
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times for all subsequent neurons depend on fast peripheral trans-
mission. Accordingly, many synapses near the sensory periphery are 
relatively strong12–15. On the other hand, synapses near the periph-
ery ought to encode stimuli as faithfully as possible, as information 
discarded at the periphery cannot be regained. Strong synapses often 
exhibit marked depression, as they are subject to vesicle depletion 
and/or postsynaptic desensitization. These considerations sug-
gest that there may be mechanisms at work that mitigate the effects  
of synaptic depression, especially near the periphery. Our results  
demonstrate how the interaction of multiple synaptic and circuit 
mechanisms can reduce synaptic depression to promote faithful  
coding of both fast and slow stimuli.

Why not simply build a synapse that does not depress at all? 
Synapses that depress only modestly have been reported previ-
ously39,40, but, even in these cases, depression is nonzero. Thus, there 
might be reasons to reduce and modulate depression without elimi-
nating it. Indeed, depression can be useful when the goal of the system 
is to encode relative intensity or contrast7,9–11. Synaptic depression 
may also be a useful way to limit the metabolic demands of neural 
activity. At a synapse in which the level of depression is tunable, the 
tradeoffs are most flexible8.

Fast and slow receptors together increase transmission bandwidth
One mechanism that promotes broadband coding is having two com-
ponents to excitatory synaptic transmission. We found that that each 
presynaptic spike elicits an EPSC with two kinetically separable and 
pharmacologically separable components. The fast component medi-
ates rapid responses at stimulus onset, whereas the slow component 
provides sustained responses to ongoing stimuli. The Drosophila 
genome encodes ten distinct nicotinic subunits, and the fast and slow 
components could therefore represent molecularly distinct recep-
tors. Alternatively, they could represent two conductance states of 
the same receptor.

EPSCs at many vertebrate central synapses also display two phases 
of decay. These two components are mediated by fast and slow iono-
tropic glutamate receptors (AMPA and NMDA receptors). Although 
most studies of NMDA receptors have focused on their role in trig-
gering long-term plasticity, they can also carry sensory signals. 
Specifically, NMDA receptors carry the steady-state response to a 
prolonged stimulus, whereas AMPA receptors mediate the transient 
onset response41–43. Thus, our results may have broad conceptual 
relevance to vertebrate neural circuits, although the details of imple-
mentation are different.
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Figure 8  Inhibition flattens the frequency 
response of synaptic transmission.  
(a) Schematic of the antennal lobe circuit 
illustrating the temporal characteristics of each 
synapse. ORN-to-PN synapses include two 
components: a fast component that depresses 
rapidly and a slow component that depresses 
more slowly. Excitation onto LNs depresses 
more completely than excitation onto PNs, and 
LN inhibition of ORN axon terminals is slow. 
As a consequence, the dynamics of ORN-to-PN 
synapses are modulated by an inhibitory signal 
that is a more transient and delayed version of 
excitation onto PNs. (b) Model PN responses 
to a train of brief and sparse odor pulses. The 
fast component has a faster rise and decay 
than the slow component and the sum of both 
components is intermediate. Inhibition speeds 
the decay of these responses. The time course 
of inhibition (parameter I(t)) is shown below. 
(c) Model PN responses to a dense train of odor 
pulses. The slow component generates a more 
sustained response than the fast component, 
but decays slowly over time. The sum of 
both components is intermediate. Inhibition 
regulates the slow component to produce a 
more stable response over time. (d) Impulse 
responses calculated by averaging model 
responses to sparse pulses, as in Figure 4d. 
(e) Impulse responses for dense pulse trains, 
calculated by computing the linear filter and 
convolving it with a 20-ms stimulus pulse, as 
in Figure 4f. (f) Model PN responses to a slowly 
modulated stimulus (a sine squared function). 
The fast component of excitation generates 
a transient response when the stimulus 
starts to increase, whereas the model with 
inhibition tracks the stimulus more accurately. 
(g) Amplitude of model PN responses at the 
stimulus frequency, plotted versus stimulus 
frequency (sine squared functions, as in f). 
Inhibition flattens the frequency response 
function, decreasing responses at intermediate 
frequencies while also boosting responses at low 
and high frequencies.
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By using two receptors with different kinetics, neurons can adjust 
their temporal selectivity. For example, mammalian retinogeniculate 
synapses contain variable ratios of AMPA to NMDA conductances, 
allowing postsynaptic neurons to encode diverse temporal features43. 
Moreover, both AMPA and NMDA receptors44 and insect nico-
tinic acetylcholine receptor subtypes30 can be can be differentially  
regulated by second messenger pathways.

Dynamic inhibition promotes broadband synaptic transmission
Many in vitro studies have shown that presynaptic inhibition can 
counteract short-term synaptic depression8,21,22. However, in pre-
vious studies, presynaptic receptors were activated tonically using 
bath-applied agonists, whereas these receptors are likely activated 
dynamically in vivo. For this reason, it is important to study how the 
dynamics of inhibition shape excitatory transmission.

We can separate inhibition into two processes: the activation of 
inhibitory interneurons, and synaptic transmission from interneurons 
onto target neurons. We measured the dynamics of both processes. 
First, we found that odor-evoked synaptic currents in LNs are tran-
sient, more transient than in PNs. Strongly depressing excitatory syn-
aptic currents have also been reported in inhibitory interneurons in 
somatosensory cortex45, olfactory cortex46 and hippocampus47.

Second, we found that the effects of LNs on target neurons grow 
slowly. Many studies have described a delay between excitation and 
inhibition48–50. This delay is often thought to arise from the additional 
synapse present in a feedforward inhibitory circuit, as compared with 
a feedforward excitatory circuit. We found that synaptic transmission 
from LNs onto ORN terminals is intrinsically slower than transmis-
sion from ORNs onto PNs.

Our model shows that the dynamics of inhibition matter. Because 
inhibition is transient, it cancels out many of the transient distor-
tions produced by synaptic depression and ORN adaptation while 
preserving the sustained response to a sustained stimulus. Because 
inhibition grows slowly, it preserves the fast onset of the response to a 
rapid-onset stimulus while also truncating responses to brief stimuli. 
Finally, because inhibition is presynaptic, it increases the difference 
between the sustained odor response and the pre-odor baseline.

Our conclusion that inhibition can promote broadband coding is 
based on both experimental results and simulations. Experimentally, 
we observed that inhibition enforced brief responses to brief stimuli, 
but sustained responses sustained stimuli (Fig. 4). This is consistent 
with the idea that inhibition flattens the frequency response of the 
circuit, as both high-frequency (brief) and low-frequency (sustained) 
stimuli are represented more faithfully in the presence of inhibition. 
Modeling allowed us to make this idea explicit by exploring responses 
to odor stimuli that we could not easily deliver in the laboratory, such 
as sinusoidal odor fluctuations and longer trains of random pulses.

Dynamic inhibition has often been interpreted as conferring selec-
tivity for specific temporal patterns of excitation48–50. In other words, 
inhibition is thought to restrict the range of temporal waveforms that 
a neuron responds to. Our results provide a different perspective: 
dynamic inhibition can actually expand the range of frequencies that a 
neuron can encode. This can occur when the frequency characteristics 
of a synapse are restricted by short-term depression, and when presy-
naptic inhibition is tuned to counteract this limitation on bandwidth. 
Our results may therefore provide insight into the function of local 
inhibitory circuits in many systems.

Strengths and limitations of our models
We employed relatively simple models whose parameters were heav-
ily constrained by experimental measurements. In any model that 

is constrained by data, the interpretation of the model is of course 
colored by the limitations of the data itself. A case in point is the slow 
component of the EPSC at ORN-to-PN synapses. We initially fit this 
to EPSCs recorded in curare. This exercise revealed that a model fit to 
pharmacologically defined EPSC components can roughly reproduce 
PN odor responses (Fig. 2). However, this simple model did not fully 
capture the dynamics of real PN odor responses in the absence of inhi-
bition (Figs. 2 and 3). It is likely that curare incompletely blocks the 
fast component; thus, when we fit the slow component to the curare 
data, it depressed too quickly. We therefore subsequently fit the slow 
component to PN odor response data with inhibition blocked (Figs. 7 
and 8 and Supplementary Fig. 5). Here the fit was better because 
the modeled slow component depressed more slowly. In the future, 
it would be interesting to use genetic manipulations to isolate these 
EPSC components more precisely.

Any model is also a simplification. For example, to model the 
dynamics of LN activity, we simply took the summed spiking  
activity of all LNs, which neglects the diversity of spiking dynamics 
across the LN population (Fig. 5). In the future, it will be interest-
ing to determine whether LNs with different dynamics have differ-
ent postsynaptic targets or weights. Our model may be useful for 
future studies of interneuron diversity because it provides a new way 
of thinking about interneuron dynamics: they can serve to minimize 
the distortions produced by the dynamics of excitatory synaptic input. 
As such, a diversity of LN dynamics may allow the network to more 
accurately remove distortions on multiple timescales.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Fly stocks. Flies were raised at 25 °C on a cornmeal-agar based medium under 
a 12-h/12-h light/dark cycle. All experiments were performed on adult female 
flies 1–3 d post-eclosion. We used the previously published stocks UAS-CD8:GFP  
(ref. 51), NP3481-Gal4 (ref. 52), GH298-Gal4 (ref. 53), NP3056-Gal4 and  
LCCH3-Gal4 (ref. 54), UAS-ChR2::EYFP (ref. 55), and shakB2 (ref. 56).

Electrophysiology. Whole-cell patch-clamp recordings from PNs and LNs were 
performed as previously described57. Briefly, the fly was positioned in a horizontal 
platform, with the dorsal part of the fly head above the platform and most of the 
fly below the platform. The dorsal part of the fly head was dissected to expose the 
brain and bathed in external saline containing 103 mM NaCl, 3 mM KCl, 5 mM 
TES, 8 mM trehalose, 10 mM glucose, 26 mM NaHCO3, 1 mM NaH2PO4, 4 mM 
MgCl2 and 1.5 mM CaCl2. Cell bodies were visualized using infrared optics and a 
40× water-immersion objective on an upright compound microscope (Olympus 
BX51). Patch pipettes (5–7 MΩ) were pulled the day of the recording and filled 
with internal solution containing 140 mM KOH, 140 mM aspartic acid, 10 mM 
HEPES, 1 mM EGTA, 1 mM KCl, 4 mM MgATP, 0.5 mM Na3GTP, and 13 mM 
biocytin hydrazide. The pH of the internal solution was adjusted to 7.2 ± 0.1 and 
osmolarity to 265 ± 3 mOsm. The internal solution for voltage-clamp record-
ings contained 140 mM CsOH in place of KOH. In a subset of voltage-clamp 
experiments, 5 mM QX-314•Cl− was added to the internal solution to reduce 
the occurrence of unclamped spikes. For these recordings, the osmolarity of the 
internal solution was readjusted to 265 ± 3 mOsm after addition of QX-314•Cl−. 
During current clamp recordings a small negative holding current (~10 pA)  
was applied to bring the resting membrane potential to between −50 and −60 
mV, thereby counteracting the small depolarizing current created by the seal  
conductance58. Recordings from labeled PNs were performed in the geno-
type NP3481-Gal4,UAS-CD8:GFP (which labels PN in glomeruli DM6, VM2, 
VM7 and DL5). LN recordings in Figure 5 were performed in the following  
genotypes: GH298-Gal4,UAS-CD8:GFP or UAS-CD8:GFP;NP3056-Gal4 
or NP3056-Gal4,UAS-CD8:GFP, and LCCH3-Gal4,UAS-CD8:GFP (ref. 55; 
these Gal4 lines collectively label eight of the nine major morphological types  
of GABAergic LNs).

After each PN recording, the identity of the recorded cell was confirmed post 
hoc by immunohistochemistry with a fluorescent conjugate of streptavidin (to 
visualize the recorded cell), rat antibody to CD8 (to visual GFP-positive neurons, 
Invitrogen, MCD0800, 1:40 dilution) and mouse antibody to nc82 (to visualize 
glomerular volumes Developmental Studies Hybridoma Bank, nc82-s, 1:50 dilu-
tion) as previously described57. In odor stimulation experiments, unless other-
wise indicated, we pooled data from PNs in glomerulus DM6, VM2 or VM7, as 
we obtained similar results for all three glomeruli. For experiments in which we 
electrically stimulated the antennal nerve, we pooled data from PNs in glomerulus  
DM6, VM2 or VM7 (VM7 was not included here because it receives input from 
ORNs in the maxillary palp, not the antenna, and so direct EPSCs cannot be 
evoked by antennal nerve stimulation). In a small subset of experiments, the 
filled PN was not recoverable, but because PNs in only four glomeruli were GFP 
labeled (DM6, VM2, VM7, DL5), and because DL5 PNs have a distinctive large 
size and low input resistance, it is nonetheless very likely that the recorded PN 
arborized in one of the three glomeruli we were intending to target (DM6, VM2, 
VM7). Recordings in Figure 2a were made in random PNs, and one antenna was 
removed before the experiment to decrease the rate of spontaneous EPSCs and 
thereby better resolve the kinetics of individual events.

In a subset of PN recordings, we observed very little depolarization of PNs in 
response to odor. This type of response was associated with very low or absent 
spontaneous activity, and generally all the PNs in the preparation exhibited 
the same behavior. Recordings in which the GFP-labeled PNs did not spike in 
response to odor presentation were terminated immediately and these prepara-
tions were discarded.

To measure LN spiking, we chose to make cell-attached recordings because 
they are less invasive than whole-cell recordings and because it is relatively 
easy to detect LN spikes in cell-attached mode. Cell-attached recordings from 
LNs were performed using saline-filled patch pipettes in voltage-clamp mode, 
with the command voltage adjusted so that the holding current was essentially  
zero. Positive pressure was released before the pipette encountered the cell  
body to prevent formation of a tight seal. The cell body was then gradually  
drawn into the pipette with weak negative pressure until a stable extracellular  

spike waveform was obtained. Recordings that showed signs of membrane  
rupture were discarded.

For ORN recordings, the fly was immobilized in a modified plastic pipetter tip 
such that the maxillary palps (which contain the ORNs presynaptic to glomerulus 
VM7) were exposed to air. A reference electrode was placed in the eye and the 
palp was stabilized using a cover slip and a glass pipette. Sensilla containing the 
dendrites of specific ORNs were visualized using a 50× air objective on an upright 
compound microscope. ORN spikes were recorded using high impedance pulled-
glass capillaries filled with external saline and inserted into the sensillum lymph 
surrounding the ORN dendrites. VM7 ORNs were readily identified based on 
their characteristic spike shape and odor response profile.

All electrophysiological recordings were performed with an Axopatch 200B 
amplifier. Data was filtered at 2 kHz and then digitized at 10 kHz.

Olfactory stimulation of ORNs. Odor stimulation was designed to produce 
rapid and reliable delivery of odor pulses of various durations. On the day of 
the experiment, the odor 2-heptanone was diluted 1:100 (vol/vol) in 990 µl  
of paraffin oil and placed in a fresh plastic screw-cap vial (1 ml). The odor  
2-heptanone was chosen because it strongly activates ORNs presynaptic to the 
three PN types we recorded from (VM7, DM6 and VM2) and because it activates 
a large number of ORNs, thereby making it likely that it recruits a substantial 
amount of LN-mediated inhibition. Charcoal-filtered air was continuously flowed 
through the odor tube at 0.7 l min−1 until the concentration of the odor at the 
outlet tube reached a steady state that was lower than the initial concentration 
when the air was turned on; thus, the effective concentration of the odor at the 
outlet tube was less than 1:100. During most of the experiment, the odor vapor 
was diverted into an open tube with a vacuum at one end (vacuum flow rate of 
0.6 l min−1) to avoid contaminating the room air. To send the odor to the fly, a 
valve (LFAA1201610H, Lee Company) rapidly switched the odor stream from 
the vacuum tube to a delivery tube aimed at the fly’s head. The delivery tube was 
3 cm long and had an inner diameter of 1.5 mm. Two miniature video cameras 
(Unibrain) were used to position the odor tube reliably in relationship to the fly’s 
head. Photo-ionization detector measurements (miniPID, Aurora Scientific) were 
used to verify that this device could reliably deliver square pulses of durations  
from 20 ms to 2 s and that the concentration of the odor at the fly’s location  
was reasonably stable throughout the experiment (Supplementary Fig. 7). Each 
odor stimulus was presented several times consecutively in each recording, with 
2–7 trials per stimulus in an ORN recording, and typically four trials per stimu-
lus in a PN recording. Responses to trials were averaged before averaging data 
across recordings.

Electrical stimulation of ORN axons. The third segments of both antennae were 
removed with fine forceps just before opening the head capsule. The antennal 
nerve ipsilateral to the recorded PN was drawn into a large-diameter saline-
filled pipette and stimulated with 50-µs pulses using a stimulus isolator (AMPI, 
Iso-Flex) in constant current mode. The stimulus amplitude was adjusted for 
each experiment to produce a reliable EPSC waveform with minimal unclamped 
spiking (7.5–150 µA). Empirically, we found that recordings with initial EPSCs 
larger than 80 pA tended to produce unclamped spikes. We therefore analyzed 
only recordings in which the initial EPSC amplitude was less than 80 pA. Except 
for this criterion, we did not attempt to remove unclamped spikes from our data, 
as these made little contribution to the average response. Cells for which we were 
unable to obtain a stable EPSC waveform in response to electrical stimulation 
were discarded. In the EPSC waveforms shown in Figure 2 and Supplementary 
Figure 1b,c, the brief electrical artifact caused by the stimulus was deleted for 
display purposes, and the trace was mended by linear extrapolation between the 
cut ends; the maximum time blanked was 1.5 ms.

Optogenetic stimulation of LNs. Experiments in Figure 6c,f were performed 
in the genotype shakB2/Y; UAS-ChR2::EYFP-C/+; UAS-ChR2::EYFP-B/NP3056-
Gal4. This fly harbors UAS-ChR2::EYFP insertions on both chromosome 2 (inser-
tion C) and chromosome 3 (insertion B)56. NP3056-Gal4 drives expression in 
a large fraction of GABAergic LNs55. These experiments were performed in a 
shakB2 background to eliminate lateral excitation, thereby isolating the kinetics 
of lateral inhibition alone59. PNs were not GFP labeled in these experiments, and 
so PNs were selected randomly, and then the glomerulus they innervated was 
identified post hoc using immunohistochemistry (see above). For consistency 
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with our other PN recordings, we included only PNs that innervated one of the 
three glomeruli that we focused on in this study; we obtained a total sample of 
seven such PNs (six from DM6 and one from VM2). Light stimuli were provided 
by a 100-W mercury arc lamp, bandpass filtered at 460–500 nm and delivered 
to the specimen focused through a 40× water-immersion objective. Light was 
gated by a shutter (Uniblitz) controlled by a TTL pulse. Neutral density filters 
were used to attenuate the light to a power density of 17–20 mW mm−2. Power 
density was measured using an optical power meter (Newport 1916-C) with the 
photodetector (818P-015-19) positioned behind a pinhole aperture placed at the 
level of the specimen. Light was presented for 5–7 trials in each recording, at an 
interval of 60 s for PN recordings and 30 s for LN recordings.

Pharmacology. Tubocurarine chloride (Tocris) was dissolved in water to make 
a 25 mM stock which was stored at 4 °C. Imidacloprid (Sigma-Aldrich, item  
# 37894) was dissolved in DMSO to make a 1 mM stock that was stored at 21–24 °C.  
Methyllycaconitine citrate salt hydrate (Sigma) was dissolved in water to make 
a 2 mM stock and kept at 4 °C. Alpha-bungarotoxin (Tocris) was dissolved in 
water to make a 5 mM stock and kept at 4 °C. Picrotoxin (Tocris) was dissolved 
in aqueous 100 mM NaCl to make a 5 mM stock solution that was stored in the 
dark at room temperature. CGP54626 (Tocris) was dissolved in DMSO to make 
a 50 mM stock solution which was stored at −20 °C.

Modeling. In Figure 1, we modeled PN membrane potential responses to ORN 
spike trains. ORN spike trains were modeled as inhomogeneous Poisson proc-
esses governed by firing rates recorded in separate experiments. Both spontane-
ous and odor-evoked firing rates were taken from our data. Because experimental 
measurements indicate that ORNs spike independently28, we generated spike 
trains for each of the 40 model ORNs independently. The number of ORNs in 
this population follows published data indicating that there are on average ~40 
ORNs that express each odorant receptor, and each of these ORNs synapses onto 
every PN in its cognate glomerulus28,32,60.

Each ORN spike produced a postsynaptic conductance whose shape was deter-
mined by the average normalized EPSC in response to nerve stimulation. We used 
the first EPSC produced by a 10-Hz stimulus, so the first 100 ms was taken from 
data, and the shape from t = 100 ms to t = 500 ms was extrapolated from a bi-
exponential fit to the first 100 ms. The maximum amplitude of this conductance 
(0.28 nS) was set such that the amplitude of a unitary EPSC before depression 
was ~13.5 pA and the amplitude of a unitary EPSP was ~7 mV, given the passive 
membrane properties described below. These EPSC and EPSP amplitudes are 
consistent with published measurements of unitary EPSCs and EPSPs in PNs 
located in glomerulus DM6 or VM2 (ref. 12).

To model short-term synaptic depression at ORN-to-PN synapses, we used 
a well-studied formalism7,8,61. We scaled the amplitude of each unitary postsy-
naptic conductance by the factor A(t), which represents the synaptic resources 
(for example, vesicles or receptors) available at time t. After each ORN spike,  
A decreased by a factor f, which then recovered with time constant τ.

if

if

s t A t t f s t A t

s t A t t A t
A t
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( ) , ( ) ( )
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= + = +
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∆

∆
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where s(t) is a binary vector, sampled with a time step (∆t) of 1 ms that takes a 
value of 1 if a spike occurred in the presynaptic ORN and 0 otherwise. The param-
eters f (which is unitless) and τ (which has units of ms) were fit to the mean nor-
malized amplitude of EPSCs recorded in PNs in response to electrical stimulation 
of the antennal nerve at 10 Hz (Fig. 1c). The synaptic conductance arising from 
each ORN spike train was calculated by first computing A(t), and then convolving 
A(t) with the standard conductance waveform described above.

Conductances arising from each ORN-to-PN synapse were summed to 
produce the total excitatory synaptic conductance in the model PN (gsyn(t)). 
Membrane potential responses of PNs were modeled according to

dV
dt

V t E g R V t Et
=

− − + ⋅ ⋅ −( ( ) ( ( ) ))( )leak syn m syn

mt

where V(t) is the membrane voltage, Eleak is the reversal potential for leak cur-
rents, Rm is the membrane resistance, Esyn is the reversal potential for synaptic 

(1)(1)

(2)(2)

currents, and τm is the membrane time constant. Eleak was set to −70 mV, which is 
close to the resting potential of PNs in tetrodotoxin58 and Esyn to −10 mV, which 
is close to the measured reversal potential for nicotinic acetylcholine receptors62. 
The constant Rm was set at 800 MΩ, which is close to published measurements63, 
whereas τm (5 ms) was adjusted so that a unitary EPSP decayed with a half-width 
of about 50 ms, in agreement with published data12. Membrane potential was 
simulated using the Euler method at a time resolution of 0.1 ms. Total excitatory 
synaptic conductance (gsyn(t)) was upsampled from 1 kHz to 10 kHz before simu-
lation. Supplementary Figure 3a shows synaptic currents and voltages generated 
by this model. This model was also used in Supplementary Figure 5d.

In Figure 2, ORN input was modeled in the same way as for Figure 1, but each 
spike elicited a conductance with two components, fast and slow. The parameters 
governing depression of the fast component (f and τ) were fit to EPSC ampli-
tudes evoked by a train of electrical stimuli at 10 Hz in IMI, and the shape of 
the unitary synaptic conductance was taken from the average EPSC evoked by 
the first stimulus of the train in IMI. Similarly, f, τ, and the shape of the unitary 
synaptic conductance for the slow component were taken from data recorded 
in curare. The slow conductance waveform was extrapolated to 500 ms using 
a single exponential and the fast conductance waveform was extrapolated to 
500 ms using a bi-exponential. The amplitudes of the two conductances before 
depression were set to 0.22 nS (fast component) and 0.06 nS (slow component) 
such that the summed conductance had an amplitude of 0.28 nS, as in the single 
component model. The ratio of fast and slow conductances was set by the fit of a 
bi-exponential decay to the first average normalized control EPSC in response to 
a 10 Hz stimulus. Supplementary Figure 3b shows synaptic currents and voltages 
generated by the two-component model.

In Figures 7 and 8 we fit the parameters of the slow component to PN odor 
response data (in picrotoxin and CGP54626) rather than to nerve stimulation 
data. This fitting procedure allowed the model to capture the slow decay in 
response to long stimuli and the prolonged response to brief stimuli, both of 
which are prominent in the data when inhibition is blocked (Figs. 3a,b and 4a and 
Supplementary Fig. 5). Another change (relative to the model in Fig. 2) is that 
the input to the model in Figures 7 and 8 was ORN firing rate rather than ORN 
spikes. This modification allowed the model to run more rapidly and facilitated 
fitting to odor response data. Each component of the synaptic conductance was 
described by a pair of equations

dA
dt

r s t A t A t A= − ⋅ ⋅ + −( ) ( ) ( ( ))/1 t

dg
dt

k s t A t g t g= ⋅ ⋅ −( ) ( ) ( )/t

As in  equation (1), A(t) governs the amplitude of the postsynaptic conductance. 
Here, s(t) is a measured ORN firing rate with units of spikes per ms, rather than a 
binary vector. The parameter r governs the rate of depression and is equivalent to 
(1 − f) in equation (1), and τA is equivalent to τ in equation (1). The conductance 
is g(t), where k controls the amplitude of the conductance and τγ specifies the  
rate of decay of the conductance. For the fast component, we used r = 0.23  
per spike, τA = 1,006 ms, k = 20 nS per spike, and τg = 9.3 ms. The values for r and 
τA were taken from the fits of EPSC amplitude as a function of stimulus number 
in IMI, whereas the parameter τg was taken from the faster exponential fit to the 
EPSC shape in IMI. The parameters of the slow component were fit (using the 
MATLAB routine nlinfit.m) to minimize the difference between the predicted 
PN membrane potential in response to the 50% density stimulus and the actual 
disinhibited response (Supplementary Fig. 5c–e). ORN spikes were delayed 
by a fixed amount (10 ms) such that the model and measured PN responses 
commenced with the same delay relative to the stimulus. Fitted parameters for  
the slow component were r = 0.0073 per spike, τA= 33,247 ms, k = 1.8 nS per  
spike, and τg = 80 ms. The two conductances were summed to yield the total  
synaptic conductance (gsyn). This conductance was then used to model the model 
PN membrane potential according to equation (2).

Although it was useful for illustrative purposes in Figures 7 and 8 to fit the 
slow component to PN odor response data rather than evoked EPSCs in curare, 
this choice did not affect any of our major conclusions regarding the model. 
When the model was fit to nerve stimulation data, as in Figure 2, rather than 
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(4)(4)
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PN odor response data, we observed qualitatively similar effects of inhibition 
on model PN odor responses in simulations analogous to those in Figures 7  
and 8f,g (data not shown).

In  Figure 7, dynamic inhibition was added to the model by taking the average 
recorded spiking activity of all LNs (Fig. 5b) and then convolving this signal with 
a 25-ms alpha function to generate a measure of functional inhibition at each 
time point (I(t); Fig. 7). This inhibitory signal divided the input to the model 
(ORN firing rate) at each point in time. Note that this is equivalent to inhibition 
decreasing the probability of synaptic release, which governs both the rate of 
depression r and the amplitude of the synaptic conductance gsyn. The magnitude 
of I(t) that we computed in this manner provided a good qualitative fit to the data, 
so its scale was not adjusted.

In Figure 8b–g, we needed to model LN firing rates (rather than taking LN 
firing rates from our data). Our model needed to capture the transience of LN 
firing rates; to achieve this, we used a depression model similar to our model of 
depression at ORN-to-PN synapses, that is, a pair of equations with the same 
form as equation (3) and (4). The parameters of this model were r = 0.3 per spike,  
τA= 1,000 ms, k = 100 and τχ = 15 ms. We chose f and τ to produce LN activity that 
depressed at about the same rate as PN excitation, but with a lower steady-state 
level, motivated by our finding that steady-state currents are smaller in LNs than 
in PNs (Fig. 5f). A positive offset of 1 spike per ms was added to LN(t) to match 
measured baseline LN activity. LN activity was simulated at a time resolution  
of 1 ms. As before, we convolved LN activity with an alpha function (25 ms) in 
order to obtain the time course of inhibition (I(t)).

In Figure 8f,g, ORN firing rates in response to sinusoidal odor concentration 
fluctuations were modeled as linearly filtered versions of the stimulus wave-
forms. We extracted the best-fit linear filter from the spiking responses of VM7 
ORNs to a plume of 2-heptanone (1:100 dilution in paraffin oil)64. The filter 
(Supplementary Fig. 3c) was extracted by cross-correlation of ORN spikes and 
simultaneously recorded odor concentration measurements (miniPID, Aurora 
Scientific), followed by decorrelation by the power spectrum of the odor con-
centration fluctuations61,64.

In our models, ORNs are the only source of excitation to PNs. In reality, PNs 
also receive lateral excitation from specialized LNs59,65. Lateral excitation can 
contribute to the slow component of EPSCs evoked by electrical stimulation of 
ORN axons12, and it also contributes to PN odor responses53,59,65. However, its 
overall contribution is small in most cases, relative to the contribution of feedfor-
ward excitation. We verified this in pilot experiments in VM7 PNs by comparing 
the magnitude of steady-state odor responses during a dense sustained stimulus 
with feedforward excitation intact (that is, with the maxillary palps intact) or 
with feedforward excitation removed (with the maxillary palps removed just 
before the experiment).

Data analysis. No formal statistical calculations were used to pre-determine  
sample sizes. Sample sizes were qualitatively governed by the observed cell-to-cell 
reliability in the measurements we performed in pilot experiments. Our sam-
ple sizes are similar to those generally employed in the field. Data distribution 
was assumed to be normal but this was not formally tested. No blinding was 
performed during experiments or analysis. All statistical tests are two-sided. 
Measurements of membrane potential were downsampled to 1 kHz before analy-
sis and averaging.

To compute the PN impulse response for sparse stimuli (Figs. 4d and 8d), all 
responses to isolated 20-ms odor pulses (defined as pulses preceded by >400 ms of 
clean air) were extracted and averaged together. To estimate the effective impulse 
response for dense stimuli (Figs. 4f and 8e), we first calculated linear filters relat-
ing the odor to the PN response. We presented a 10-s-long binary stimulus in 
which the valve switched randomly between open and closed states every 20 ms,  

with an equal probability of being open and closed. Filters were obtained by cross-
correlating the valve state with PN membrane potential. Because this stimulus 
was close to white, and because correcting for stimulus correlations increases 
noise in filter estimates, we did not correct for stimulus correlations. Correcting 
for stimulus correlations should make these filters narrower and should have 
the same effect on filters derived from control and anatagonist data. Filters were 
then scaled to obtain the best linear fit to the response. The effective impulse 
response in Figures 4f and 8e was generated by convolving this filter with a 20-ms  
pulse stimulus.

To measure presynaptic inhibition (Fig. 6f), we took the s.d. in PN holding 
current, as it is sensitive to both the amplitude and frequency of spontaneous 
EPSCs in PNs. We first computed the s.d. over 20-ms windows sliding in 0.1-ms 
increments. For each window, we then computed the median value across trials 
for that cell. Finally, we calculated the mean value for each window across cells.

To obtain the frequency response of model PN responses in Figure 8g, we 
modeled responses to sine-squared stimuli at different frequencies (for a stimulus 
frequency ω, the stimulus amplitude was sin(2π(ω/2)t)2). These responses r(t) 
were projected onto a sinusoid at frequency ω to obtain a measure of response 
amplitude at that frequency
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A Supplementary Methods Checklist is available.
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