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Maintaining the short-term memory of recent stimuli 
is critical to cognition. Memories provide the context 
needed for perception and decision-making1,2 and are 

particularly important for learning to predict the future. Predictions 
are based on expectations, allowing one to use the current context to 
predict which stimulus is likely to occur next. Expectations reflect 
previously learned statistical regularities between stimuli (that is, A, 
B is usually followed by C). These are learned by forming associa-
tions through time between the memory of recent stimuli (A and B) 
and the representation of current sensory inputs (C). Once learned, 
these associations facilitate predictions (that is, expecting C when 
you see A and B), which improves sensory processing3,4 and facili-
tates decisions by allowing them to be made earlier5–7.

While maintaining both sensory and memory information can 
facilitate cognition, it is unknown how the brain maintains both 
representations without interference. Previous work has shown that 
neural networks have a limited capacity, unable to accurately encode 
multiple stimuli8 or maintain multiple short-term memories9,10. The 
limited capacity of neural networks is thought to be due to interfer-
ence that arises when simultaneously encoding sensory and mem-
ory representations in the same population of neurons. Theoretical 
work has shown that interference can be reduced by orthogonal-
izing representations11–13, possibly by having neurons with nonlin-
ear or random selectivity14. However, it remains unclear whether, or 
how, such orthogonalization occurs in the brain. To address this, we 
investigated the mechanisms used by the brain to avoid interference 
between sensory and memory representations.

To study interference between sensory and memory represen-
tations, we used an implicit sequence-learning paradigm to build 
associations between sensory stimuli15,16. As we detail below, this 
facilitated predictions of upcoming stimuli and created interference 
between the short-term memory of recent stimuli and the sensory 
representation of new stimuli. We show that the brain mitigates this 
interference by dynamically rotating sensory representations into an 
orthogonal memory representation. This rotation was supported by 
dynamics in the selectivity of individual neurons. Indeed, we found 

populations of ‘stable’ neurons, which maintained their selectivity 
over time, and ‘switching’ neurons, which inverted their selectiv-
ity from the sensory to memory time periods. The combination of 
these dynamics facilitated the rotation of the population representa-
tion, allowing the same network of neurons to efficiently represent 
both sensory information and short-term memories.

Results
To study how sensory and short-term memory representations 
interact in the sensory cortex, we exposed mice to sequences of four 
auditory chords (Methods). Statistical regularities in the transitions 
between chords created learnable predictions within the sequences 
(Fig. 1a). Sequences began with a pair of contextual chords: either 
an A and B stimulus pair (the AB context) or an X and Y stimulus 
pair (the XY context). These contexts predicted what chord would 
follow: for 68% of trials, the AB context was followed by a C chord 
and the XY context was followed by a C* chord. However, for a sub-
set of trials (20%), the context was unexpectedly followed by the 
other C/C* stimulus (that is, ABC* and XYC; the remaining 12% 
of trials were ambiguous stimuli; Methods). All sequences ended 
with a D chord. Importantly, the sequences were designed to bal-
ance the overall likelihood of each sensory stimulus across condi-
tions. Therefore, before the start of each sequence, the animal had 
no expectation as to what chords it would experience. Only after 
the presentation of the contextual stimulus (A or X) could the ani-
mal predict the upcoming C/C* stimulus. Beginning naive, the ani-
mals experienced 1,500 sequences per day for 4 consecutive days  
(Fig. 1a and Methods). No behavioral task was required by the ani-
mal, which allowed us to study how unsupervised learning affects 
sensory processing and short-term memory17–20.

To measure sensory and short-term memory representations 
in the brain, we recorded 522 neurons from the auditory cortex 
of 7 mice with an average of 130 neurons per day (across mice; 
Methods). Although electrodes were chronically implanted, indi-
vidual neurons were not tracked across recording sessions. Neurons 
responded selectively to the presentation of the context chords  
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Fig. 1 | Associative learning of sequences facilitates prediction. a, Schematic of the implicit sequence-learning paradigm. Beginning naive, animals heard 
1,500 sequences of auditory chords every day over 4 days. Sequences had statistical regularities between chords: 68% expected trials (ABCD, XYC*D), 
20% unexpected (ABC*D, XYCD), 12% mixed stimuli (Methods). Inset shows a schematic of the silicon probe placement in right auditory (Aud) cortex. 
The histology image shows the electrode location: green, immunolabel for astrocytes (highlighting the electrode track); blue, Hoechst stain for cells. Scale 
bar, 150 µm. b, Example sequence responses from two neurons preferring the AB context stimulus (top; mouse-496 (M496), day 2) and the C stimulus 
(bottom; M537, day 2). Lines and bands show the mean ± s.e.m. of the FR. Gray patches indicate stimulus periods. The legend shows the four types of 
sequences experienced (these colors are maintained throughout the paper). c, Schematic of the classifier trained to discriminate the neural responses 
to the A/X stimulus. The projection of the withheld response onto the encoding axis is shown. d,e, The neural population encoding of A/X shown on day 
1 (d) and day 4 (e). Lines show the mean ± s.e.m. of the population projection onto the A/X sensory axis for all four conditions. Positive and negative 
projections indicate X (green) and A (purple) encoding, respectively. Light and dark gray horizontal bars mark significant differences for AB versus XY 
and C versus C*, respectively (two-sided t-test, P ≤ 0.001, Bonferroni-corrected). Orange outlines the A/X training period. For panels d–i, n = 1,064 
withheld trials, combined across animals per day. f, Points show the mean ± s.e.m. of encoding of the A/X stimulus during stimulus presentation. Day 
1 = 0.37 ± 0.02, day 2 = 0.27 ± 0.022, day 3 = 0.28 ± 0.022, day 4 = 0.32 ± 0.021, all greater than zero, P < 1/5,000, two-sided bootstrap tests. Negatively 
labeled conditions (that is, A) were inverted, such that positive values on the y axis indicate A and X trials are ‘correctly’ encoded as A and X, respectively. 
Slope mean ± s.e.m. over days = −0.012 ± 0.009, P = 0.094, one-sided bootstrap test. g,h, Lines show the mean ± s.e.m. of population encoding of C/C* 
information across the sequence time course on day 1 (g) and day 4 (h). Plots are as in d and e. Blue outlines the C/C* training period. Positive and 
negative projections indicate C* (light blue) and C (dark blue) encoding, respectively. i, Predictive encoding of the upcoming C/C* stimulus during A/X 
exposure increased with experience. Points show the mean ± s.e.m. encoding of the predicted C/C* stimulus, measured as the projection onto the C/C* 
sensory axis during the A/X stimulus (black outline in g and h). Day 1 = 0.13 ± 0.022, P < 1/5,000, day 2 = 0.07 ± 0.023, P = 0.0036, day 3 = 0.076 ± 0.023, 
P < 1/5,000, day 4 = 0.19 ± 0.022, P < 1/5,000, all two-sided bootstrap tests against zero. Lines and shaded regions show the mean and 95% CIs of 
bootstrapped linear regressions. Slope mean ± s.e.m. over days = 0.02 ± 0.01, P = 0.022, one-sided bootstrap test. See Supplementary Fig. 2b for predictive 
encoding during blocks of trials within days. For all panels, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.
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(A versus X and B versus Y) and the predicted chord (C versus C*; 
see Fig. 1b for example neurons). To capture how the population 
of recorded neurons represented each stimulus in the sequence, we 
trained linear support vector machine classifiers to discriminate 
the population firing rate (FR) responses to each pair of stimuli 
(A/X, B/Y, C/C*, with responses averaged over 10–110-ms after 
stimulus onset; see Methods and Supplementary Fig. 1 for classi-
fier performance details). To ensure that the classifier was unbi-
ased, all trial types were balanced during training (that is, there 
was an equal number of ABCD, ABC*D, XYCD and XYC*D trials). 
Separate classifiers were trained for each recording session, using 
simultaneously recorded neurons. All analyses were performed on 
withheld data.

Each classifier defined an ‘encoding axis’ for a pair of stimuli 
(the axis is the vector normal to the hyperplane of the classifier). 
By projecting the FR of the neural population onto the encoding 
axis, we could estimate stimulus information in the population at 
each moment in time (see Fig. 1c for a schematic and Methods for 
details). As expected, the population encoded each sensory stimulus 
when it was presented in the sequence on all 4 days (A/X: Fig. 1d–f; 
B/Y: Extended Data Fig. 1; C/C*: Fig. 1g,h; the accuracy of decoding 
is shown in Extended Data Fig. 2).

Alignment of encoding axes facilitates prediction and postdic-
tion. Experience over days led to associative learning between stim-
uli in the sequence. These associations facilitated predictions in the 
auditory cortex, whereby on day 4, during the presentation of A/X, 
there was predictive encoding of the expected C/C* stimulus. This 
can be seen as the neural population representing C or C* when A 
or X was presented, respectively (Fig. 1g,h, black box, and Extended 
Data Fig. 3). This predictive effect was relatively weak on days 1 
to 3 before increasing on day 4, which suggests that experience 
strengthened the prediction (day 1 = 0.13 ± 0.022, P < 1/5,000; day 
2 = 0.07 ± 0.023, P = 0.0036; day 3 = 0.076 ± 0.023, P < 1/5,000; day 
4 = 0.19 ± 0.022, P < 1/5,000, bootstrap tests. Slope mean ± s.e.m. 
over days = 0.02 ± 0.01, P = 0.022, two-sided bootstrap tests; day 4 

to day 1 = 0.07, P = 0.015, one-sided permutation test) (Fig. 1i and 
see Supplementary Fig. 2b for similar trends within a day).

The relationship between the associated A/X and C/C* stimuli 
can be highlighted by projecting the activity of the neural popula-
tion into a two-dimensional (2D) state space defined by the A/X 
sensory and C/C* sensory encoding axes (Fig. 2a). This state space 
tracks the co-evolution of information along both sensory axes dur-
ing the sequence. On day 4, the A/X stimulus evoked an oblique 
response in this state space, which indicates that the A/X stimu-
lus induced both its own representation and that of the predicted 
stimulus (A–C and X–C*, respectively). These predictions increased 
with experience, as reflected by an increase in the angle of the neu-
ral trajectories in this 2D space over days (Extended Data Fig. 4a,b).

The oblique response in the sensory encoding state space sug-
gests that experience caused the A/X and C/C* representations to 
align. If true, then the A/X encoding and C/C* encoding axes should 
become more similar over time. To test this, we measured the angle 
between the A/X and C/C* axes (Methods). On day 1, the average 
angle across blocks was 84 ± 7.4°. This near-orthogonality is consis-
tent with the sensory cortex independently representing different, 
unassociated, stimuli before learning. With experience, the angle 
significantly decreased (Fig. 2b; slope mean ± s.e.m. = −0.89 ± 0.18° 
per block of trials, P < 1/5,000), such that by day 4, the angle was 
significantly less than orthogonal (67 ± 8.2, P = 0.0057, both 
one-sided bootstrap tests). This trend started within day 1 (Fig. 2b;  
P = 0.12, one-sided bootstrap test), which suggests that align-
ment starts immediately with experience. Note that none of these 
results depended on the classifier type or its hyperparameters 
(Supplementary Fig. 3 and Methods).

Our results are consistent with previous experimental and 
modeling work, which showed that single neurons respond simi-
larly to associated stimuli15,16,21–23. We also found that the response 
of single neurons to A/X and C/C* became more correlated with 
experience (Fig. 2c,d; day 1 slope between A/X and C/C* selec-
tivity = −0.09 ± 0.1, P = 0.205, n = 121; day 4 slope = 0.25 ± 0.087, 
P = 0.004, n = 143; change of slope over days = 0.08 ± 0.04, P = 0.028, 
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Fig. 2 | sensory representations align with experience. a, Mean projection of neural activity onto the A/X sensory axis (x axis) and C/C* sensory axis  
(y axis) during presentation of the A/X stimulus (−10to 170 ms) on day 4 for all four conditions (n = 266 trials each, n = 1,064 total). The oblique response 
reflects prediction of the C/C* stimulus. Marker saturation increases with time (key shown along the top); squares indicate time points before stimulus 
onset. Inset shows PCs of neural trajectories in gray, with the black arrow size matching the percentage of explained variance per PC. The angle of the 
first PC increased with experience (Extended Data Fig. 4a,b). b, The angle between A/X and C/C* sensory axes decreased across days. Points show 
the mean ± s.e.m. of angles calculated per block of trials across 4 days (marker color indicates day; 500 trials per block, stepped by 200 trials). Top 
gray squares indicate significant difference from 90° (P ≤ 0.01, one-sided bootstrap test, n = 5,000 resamples of neurons). Lines and shaded regions 
show the mean and 95% CIs of linear regressions of change in angle over blocks: slope mean ± s.e.m. = −0.89 ± 0.18, P < 1/5,000, one-sided bootstrap 
test. c,d, Correlation between A/X selectivity (x axis) and C/C* selectivity (y axis) of individual neurons for day 1 (c) and day 4 (d). Selectivity is the 
z-scored FR difference calculated during A/X (10–175 ms) and C/C* (360–525 ms). Dots show individual neurons. Lines and shaded regions show the 
mean and 95% CIs of linear regression: day 1 slope mean ± s.e.m. = −0.09 ± 0.1, P = 0.205, n = 121, bootstrap test; day 4 slope = 0.25 ± 0.087, P = 0.004, 
n = 143. Consistent with the axis alignment shown in b, the slope relating A/X and C/C* selectivity increased over days; change in slope across days 
mean ± s.e.m. = 0.08 ± 0.04, P = 0.028. All one-sided bootstrap tests.
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one-sided bootstrap tests). Together, these results suggest that 
implicit associative learning increased the number of neurons that 
have joint selectivity to A and C (or X and C*), which aligned the 
encoding axes and facilitated the neural prediction of future stimuli 
across days (Fig. 1g–i).

We also examined the relationship between the representation  
of B/Y and the representations of A/X and C/C* (Extended Data 
Fig. 1f–g). Unlike A/X, the B/Y and C/C* sensory axes did not align, 
possibly because B/Y did not add predictive value about which C/C* 
stimulus would occur (as it was already fully predicted by the A/X 
stimulus)24.

It is important to note that the alignment of the A/X and C/C* 
axes does not define a directional relationship between the stimuli. 
So, similar to the A/X stimulus inducing a predictive response along 
the C/C* sensory axis, the presentation of the C/C* stimulus should 
also evoke a response along the A/X sensory axis. This can be seen 
in the A/X–C/C* state space, where the presentation of the C/C* 
stimulus drove neural activity along an angle, encoding the A–C/
X–C* association (Fig. 3a), an effect that increased with experience 
(Extended Data Fig. 4c,d). This is a postdiction; that is, new sensory 
inputs inform the representation of past events. Postdiction is a com-
mon psychological phenomenon that improves perception (and can 
cause illusions)25–28. Our results suggest that postdiction arises from 
the same neural mechanism as prediction; that is, the alignment of 
population representations of associated stimuli. Consistent with 
this, we found that the angles between A/X and C/C* sensory axes, 
calculated per mouse, correlated with the strength of the prediction/
postdiction of the animals (Supplementary Fig. 4a,b).

Alignment of encoding axes leads to interference. The alignment 
of A/X and C/C* sensory representations facilitated prediction/post-
diction, but it also led to interference between the current sensory 
inputs and the representation of the past. This interference occurred 
on unexpected trials, when the initial sensory representation of A/X 

was overwritten by an unexpected C*/C. Before the C/C* stimu-
lus, the representation of the A/X stimulus was correct (Fig. 3a). 
However, the onset of the unexpected C*/C stimulus caused the 
population encoding of A/X to reverse and cross the hyperplane to 
encode the incorrect context: ABC*D trials were encoded as X–C*, 
and XYCD encoded as A–C (Fig. 3b; day 4, A/X encoding on unex-
pected trials: −0.16 ± 0.033, P < 1/5,000, two-sided bootstrap test). 
This effect grew with experience, with unexpected C*/C sounds 
leading to a stronger reversal of the A/X representation over days 
(slope = −0.039 ± 0.015, P = 0.0068, one-sided bootstrap test).

An orthogonal memory representation avoids interference. 
Maintaining an accurate account of stimulus history is critical for 
making decisions and learning associations across time1,2. Therefore, 
we were interested in whether the auditory cortex maintained a 
memory representation of the A/X context that was resilient against 
interference from associative learning. To this end, we trained an 
‘A/X memory’ classifier to discriminate the AB/XY context using 
the activity of neurons during the presentation of the C/C* stimulus 
(Fig. 3c and Extended Data Fig. 5). This A/X memory axis encoded 
the memory of A/X during the C/C* stimulus, but not during the 
A/X stimulus (Fig. 3d and Extended Data Fig. 6). This comple-
mented the A/X sensory axis, which accurately encoded A/X dur-
ing its presentation, but failed during the memory period (Fig. 3d). 
In this way, the transition between A/X sensory to A/X memory 
encoding reflects a change in the representation of the A/X con-
text during the sequence. This change occurred during the B/Y pre-
sentation and progressed earlier in the sequence with experience 
(Extended Data Fig. 6c).

Unlike the A/X sensory representation, the A/X memory repre-
sentation of the A/X chord was not overwritten by the C/C* stim-
ulus (Fig. 3e). Interference was avoided because the A/X memory 
axis was orthogonal to the C/C* sensory axis. By day 4, the angle 
between A/X memory and C/C* sensory was 90 ± 9.8° (P = 0.49, 

Fig. 3 | orthogonal memory representation avoids interference. a, Neural activity is projected into the A/X–C/C* sensory state space on day 4 during the 
C/C* stimulus (340–520 ms, n = 1,064 trials; see Extended Data Fig. 4c for day 1). The A/X sensory encoding (x axis) of unexpected trials (ABC*D, pink, 
and XYCD, green) was incorrect after C/C* stimulus onset. Figure format follows that in Fig. 2a. b, Experience increased the postdiction of A/X encoding 
during the C/C* stimulus (360–460 ms). Points show the mean ± s.e.m. of A/X encoding; positive and negative values indicate correct and incorrect A/X 
encoding, respectively. Interference on unexpected trials (gray) increased across days (n = 532 trials): day 1 mean ± s.e.m. = −0.024 ± 0.036, P = 0.48, 
day 2 = −0.084 ± 0.032, P = 0.0056, day 3 = −0.07 ± 0.034, P = 0.034, day 4 = −0.16 ± 0.033, P < 1/5,000, two-sided bootstrap tests; change over days 
slope mean ± s.e.m. = −0.039 ± 0.015, P = 0.0068, one-sided bootstrap test. A/X encoding on expected trials (black) remained correct over days (n = 532 
trials): day 1 = 0.13 ± 0.03, P < 1/5,000, day 2 = 0.091 ± 0.033, P = 0.0052, day 3 = 0.086 ± 0.03, P = 0.004, day 4 = 0.17 ± 0.031, P < 1/5,000, two-sided 
bootstrap tests; change over days slope = 0.012 ± 0.014, P = 0.19, one-sided bootstrap test. c, The memory of A/X was maintained during the C/C* 
stimulus along the A/X memory axis on day 4 (and day 1, see Extended Data Fig. 5). Lines show the mean ± s.e.m. of neural activity projections onto the 
A/X memory axis. The A/X memory classifier was trained during the C/C* stimulus (360–460 ms, blue range) on the preceding A/X stimulus (that is, 
ABCD, ABC*D versus XYCD, XYC*D; Methods). Positive and negative projections indicate XY (green) and AB (purple) memory encoding, respectively. 
Significant differences between AB and XY trials are shown by the horizontal bar (n = 1,064, P ≤ 0.001, two-sided t-tests, Bonferroni-corrected for multiple 
comparisons). Figure format follows that in Fig. 1d,e. For c and d, the gray patches indicate the timing of chords. d, Projection of neural responses onto 
the A/X sensory axis (orange) and the A/X memory axis (blue) over time. The orange and blue horizontal bars indicate stronger A/X encoding along 
the sensory amd memory axes, respectively (n = 1,064, P ≤ 0.001, two-sided t-tests, Bonferroni-corrected). Extended Data Fig. 6c shows when encoding 
switched from sensory to memory across days. e, The neural activity projected onto the A/X memory (x axis)–C/C* sensory (y axis) state space on 
day 4. All four conditions are correctly encoded. Figure format follows a. f, The angle between A/X memory and C/C* sensory axes became orthogonal 
with experience. Points show the mean ± s.e.m. of angles, as in Fig. 2b. Change of angle across blocks: slope mean ± s.e.m. = −0.78 ± 0.2, P < 1/5,000, 
one-sided bootstrap test (n = 5,000 resamples). g, Schematic showing the angles between the three axes of interest, A/X sensory, C/C* sensory and 
A/X memory, on day 4. h, The dimensionality of state spaces during C/C* (340–520 ms) was estimated by the EVR of the first PC (PC1) of the neural 
trajectories within a given state space. Violin plots show the distribution of the EVR, bootstrapped across trials (n = 5,000 resamples). In the A/X–C/C* 
sensory state space (gray, shown in a), the bootstrapped EVR was significantly greater than chance on all 4 days (day 1 = 0.93 ± 0.02, day 2 = 0.93 ± 0.02, 
day 3 = 0.93 ± 0.02 and day 4 = 0.97 ± 0.011, all P ≤ 1/5,000 by permutation tests; Methods). The EVR increased from day 1 to 4 (horizontal bar), day 4 
to day 1 = 0.036, P = 0.0054, permutation test; regression across days is trending: slope mean ± s.e.m. = 0.01 ± 0.01, P = 0.066, bootstrap test. In the A/X 
memory–C/C* state space (orange, shown in d), the bootstrapped EVR was greater than chance on day 1 (0.77 ± 0.034, P ≤ 1/5,000), but decreased 
with experience (day 2 = 0.58 ± 0.04, P = 0.43; day 3 = 0.59 ± 0.04, P = 0.15; day 4 = 0.67 ± 0.05, P = 0.015, all permutation tests; day 4 to day 1 = −0.11, 
P = 0.011, permutation test; regression is trending: slope mean ± s.e.m. = −0.03 ± 0.02, P = 0.059, bootstrap test). The EVR of the A/X–C/C* sensory 
state space was significantly higher than the EVR of the A/X memory–C/C* sensory state space: difference on days 1–4: 17%, 40%, 40% and 32%, all 
P ≤ 1/5,000 by permutation test. All tests in h are one-sided. For all panels, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.
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difference from 90°, one-sided bootstrap test). Again, this changed 
with experience, with the angle between A/X memory and C/C* sen-
sory beginning slightly obtuse on day 1 and decreasing to become 
orthogonal over days (Fig. 3f). Figure 3g summarizes the angular 
relationships between all three axes on day 4, showing both the pre-
dictive alignment of the A/X sensory and C/C* sensory axes and 
the orthogonality between the A/X memory and C/C* sensory axes.

The reduced angle between the A/X sensory and C/C* sen-
sory representations suggest that they reflect a single latent vari-
able (the AC/XC* association). If true, then neural activity should 
follow a low dimensional trajectory within the A/X–C/C* sen-
sory state space (Methods). Indeed, during the presentation of 
the C/C* stimulus, the dimensionality of the response within the 
A/X–C/C* sensory state space was significantly lower than expected 
by chance and was lower on day 4 compared with day 1 (Fig. 3h 

and Methods). Consistent with this, the dimensionality of the full 
neural space trended toward decreasing over days (Extended Data 
Fig. 5e). In contrast, the dimensionality of the A/X memory–C/C* 
sensory state space increased from day 1 to day 4 (Fig. 3h). These 
results suggest that A/X sensory and C/C* encoding are captured 
by a single latent variable, while A/X memory is orthogonal to this  
sensory representation.

Finally, we tested how A/X sensory and A/X memory representa-
tions influenced sensory processing of the C/C* stimulus (Extended 
Data Fig. 7). There was a trial-by-trial correlation between the 
strength of A/X encoding, measured 50-ms before the C/C* stimu-
lus, and the strength of the C/C* response. Yet, the relationship was 
dissociated between the two A/X encoding axes. On unexpected 
trials, the C/C* representation was positively correlated with the 
A/X memory representation, but negatively correlated with the A/X 
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sensory representation (Extended Data Fig. 7d,f). The reverse trend 
was seen on expected trials (Extended Data Fig. 7c). Together, these 
results suggest that A/X sensory and memory representations have 

different roles in prediction. That is, the sensory representation 
facilitates responses to expected stimuli, while the memory repre-
sentation magnifies unexpected stimuli or ‘prediction errors’.
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Rotational dynamics transform sensory representations into 
orthogonal short-term memory representations. Together, our 
results show that the memory representation of the A/X stimulus is 
orthogonal to sensory inputs. By becoming orthogonal, the mem-
ory representation avoids interference by ‘getting out of the way’ of 
subsequent inputs (that is, C/C*). Orthogonal representations have 
notable computational advantages29,30. Theoretical work has found 
that orthogonalization minimizes the interference13, increases the 
memory capacity of neural networks12 and maximizes the sepa-
rability of representations (improving decoding)14. Next, we were 
interested in understanding how the activity of individual neurons 
allowed the population representation of the A/X stimulus to trans-
form from the sensory axis to an orthogonal memory axis.

Two general mechanisms could lead to orthogonal sensory 
and memory representations. First, sensory inputs and memory 
could be represented by independent populations of neurons  
(Fig. 4a). Second, sensory inputs and memory could be represented 
in orthogonal dimensions within the same population of neurons 
(Fig. 4b,c). To distinguish between these hypotheses, we tested 
whether neurons carried information about the A/X stimulus dur-
ing both the sensory and memory time periods. Figure 4d shows the 
distribution of A/X selectivity during both the sensory and memory 
time periods across all A/X-selective neurons. This distribution 
contains two types of neurons: ‘single’ neurons, which are selective 
during only one time period (sensory or memory), and ‘conjunc-
tive’ neurons, which are selective during both time periods. Under 
the independent mechanism, there should be more single neurons 
than expected by chance (Fig. 4a, insets). To test this, we generated 
a null distribution by permuting A/X selectivity in each time period 
across neurons, breaking any association of A/X selectivity between 
the sensory and memory time periods (Methods). Contrary to the 
prediction from the independent mechanism, we found fewer single 
neurons than expected by chance (Fig. 4e; single/n = 0.33, n = 522, 
P < 1/1,000, one-sided permutation test). This suggests that both 
sensory and memory representations exist within the same popula-
tion of neurons, but along orthogonal dimensions (Fig. 4b,c).

There is a spectrum of mechanisms by which sensory representa-
tions could be transformed into memory representations within the 
same population. These mechanisms range from relying on neurons 
with random selectivity (Fig. 4c, left) to relying on neurons with 
structured changes in their selectivity (Fig. 4c, right). Previous work 
has argued that random selectivity can generate orthogonal rep-
resentations29,30. However, in our dataset, a chi-squared test found 
that the observed counts of conjunctive and single neurons were 
significantly different from what would be expected by a random 
mechanism (chi-squared statistic = 120.48, P = 2.6 × 10−22, d.f. = 8; 
Methods). Likewise, across all 4 days, we found more conjunctive 
neurons and a greater ratio of conjunctive/single neurons than 
expected by the random mechanism (Fig. 4f,g; conjunctive/n = 0.18, 
n = 522, P < 1/1,000; conjunctive/single ratio = 0.54, P < 1/1,000, 
one-sided permutation tests). These effects increased with expe-
rience, whereby the proportion of conjunctive neurons and the 
ratio of conjunctive/single neurons were not initially significant 
on day 1, but increased to reach significance by the end of day 1 
and continued to increase across days (Fig. 4e–g). Together, these 
results suggest that orthogonalization in the population is not just 
due to random changes in selectivity, but is facilitated by a struc-
tured mechanism that increases the proportion of conjunctively  
selective neurons.

To understand the nature of the structured mechanism, we exam-
ined how the selectivity of individual neurons changed from the 
sensory to memory time periods. To this end, we used an unsuper-
vised clustering algorithm31 to group neurons by their time course 
of A/X selectivity (Methods). Clustering revealed two functional 
clusters of conjunctive neurons: stable and switching. Stable neu-
rons maintained their contextual preference across the sequence, 
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while switching neurons switched their A/X contextual preference 
during the sequence (Fig. 5a and see Fig. 5b for the full population 
across all 4 days).

Further analyses confirmed that stable and switching dynam-
ics captured the time courses of selectivity in the auditory cortex. 
First, we measured the pairwise similarity of the time courses of 
A/X selectivity for each pair of neurons. As seen in Fig. 5c, the four 
clusters of stable and switching neurons have high similarity within 
their cluster and low similarity between clusters. Second, these clus-
ters were consistent within subsets of trials (C, C* and ambiguous 
stimuli; Methods and Extended Data Fig. 8). This reflects the reli-
ability of clustering and suggests that the observed dynamics were 
not due to nonlinear mixing with the stimulus presented during the 
memory period. Finally, the clusters were non-overlapping when 
projected into low-dimensional spaces, and similar clusters were 
seen with other clustering approaches (Extended Data Fig. 9).

To confirm the significance of these neuron groups outside 
clustering, we used a binomial test to show the observed counts of 
stable and switching neurons were greater than expected by chance 
(Methods; stable proportion = 0.12, P = 5.96 × 10−15; switch-
ing proportion = 0.06, P = 0.019; conjunctive proportion = 0.18, 
P = 6.1 × 10−14; all greater than chance; single proportion = 0.33, 
P = 0.00019, less than chance, n = 522, all binomial tests). Several 
lines of evidence suggested that the increase in stable and switch-
ing neurons was not due to smoothing. The sensory and memory 
time periods are well separated within the sequence, our smooth-
ing kernel was less than the space between the time periods and 
smoothing random selectivity did not produce the same level of 
structure as our neural recordings (Supplementary Figs. 5 and 6 
and Methods).

Next, we investigated how stable and switching neurons supported 
the rotation of the sensory encoding axis to the memory encoding axis 
by examining the classifier weights of each neuron group. As expected 
by their conjunctive selectivity, stable neurons contributed significant 
weights to both the sensory and memory encoding axes (Fig. 6a). 
Similarly, switching neurons significantly contributed to both axes, but 
with inverted contributions to the A/X sensory axis and A/X memory 
axis (Fig. 6a). This reflects how switching neurons reverse their prefer-
ence over time. A similar pattern was seen in the classifier weights of 
individual neurons, whereby sensory and memory classifier weights 
were positively correlated in stable neurons and negatively correlated 
in switching neurons (Fig. 6b; stable neurons slope = 0.51 ± 0.069, 
P < 1/5,000; switching neurons slope = −0.38 ± 0.089, P = 0.0004, 
one-sided bootstrap test). Over days of experience, the correlation 
between the A/X sensory and A/X memory weights of stable neurons 
increased, which is consistent with learning playing a role in develop-
ing structure in the rotation (Fig. 6c).

To visualize rotational dynamics in the population, we plotted 
the time course of A/X selectivity for stable and switching neurons 
(Fig. 6d,e for day 1 and 4, respectively). During the A/X period, 
both stable and switching neurons increased their selectivity to their 
(initially) preferred chord, thereby creating the A/X sensory axis. 
Then, over the sequence, switching neurons inverted their selectiv-
ity, rotating the sensory axis to the A/X memory axis. Thus, both 
stable and switching neurons work together to facilitate a structured 
rotation, and either alone is insufficient to create a memory axis that 
is orthogonal to the C/C* axis or to avoid interference. To directly 
show how the A/X rotational dynamics avoided interference with 
C/C*, we plotted the response of stable and switching neurons to the 
four conditions (Fig. 6f, limited to neurons with significant C/C* 
selectivity; Methods). Consistent with the alignment of sensory 
representations, responses to C and C* followed the initial sensory 
responses to A and X, respectively (as in Fig. 2b–d). Yet, because of 
the rotational dynamics in the population, the A/X memory axis 
was orthogonal to the C/C* sensory response, and therefore avoided 
interference (as in Fig. 3f–g).

Structure in rotation increases the efficiency of orthogonal 
representations. Our results suggest that sensory and memory 
representations are represented along orthogonal dimensions in 
the same population of neurons. Furthermore, we found evidence 
for structure in the rotational dynamics of these representations  
(Fig. 4). Previous work has highlighted the advantages of random 
projections14,32, but the relative advantages of a more structured 
rotation have not been quantified. Therefore, to contrast random 
and structured representations, we developed analytical and com-
putational models of rotational dynamics (Methods). The compu-
tational model consisted of an input layer connected to a recurrent 
network of neurons (Fig. 7a). The input layer signaled the A/X and 
C/C* stimulus during each sensory period. Inputs fed into a recur-
rent ‘representational’ layer, which acted as a readout of sensory 
and memory information and was intended to capture the neural 
activity observed in the auditory cortex. Because the structure of 
the model mirrors our neural recordings, we could perform the 
same analyses on both datasets. That is, calculating selectivity and 
training classifiers to estimate the encoding axes during each time 
period and examining the dynamics of individual neurons. As with 
our neural recordings, we found that aligning the A/X and C/C* 
representations in the model increased both prediction and postdic-
tion (Supplementary Fig. 4a,b).

Using this neural network model, we parametrically varied 
the degree of structure in the rotation by adjusting the recurrent 
weights in the representational layer. This allowed us to control the 
relationship between A/X sensory and A/X memory selectivity in 
single neurons, while creating network models with rotations rang-
ing from a random rotation, which relied on random patterns of 
selectivity in individual neurons, to a structured rotation, which 
relied on stable and switching neurons exclusively (Fig. 7a, lower 
panel shows the spectrum of A/X selectivity produced by random 
to structured rotations, and Supplementary Fig. 4c). Regardless of 
the level of structure or randomness, all the neural network models 
generated orthogonal representations between A/X memory and 
C/C* sensory (Supplementary Fig. 4e). Note that some form of rota-
tion was required to preserve A/X memory accuracy, and models 
without rotational dynamics showed interference between C/C* 
sensory and A/X memory (Supplemental Fig. 7).

As noted above, our experiments suggest that there is more 
structure in the rotational dynamics than expected by a random 
mechanism (Fig. 4). Consistent with our experimental observa-
tions, increasing the degree of structure in the rotation in the neural 
network model generated more conjunctive neurons, which were 
selective to both A/X sensory and A/X memory (Fig. 7b; a similar 
prediction was made by the analytical model). The computational 
and analytical models suggest that the increased structure may have 
several computational benefits.

First, a structured rotation requires fewer selective neurons 
than a random transformation, thereby creating a more compact 
representation. Figure 7c shows that adding structure to the rota-
tion of the model decreases the proportion of neurons selective to 
A/X during the sensory and memory periods, while maintaining 
memory accuracy. This is because in a structured network, there 
are more conjunctive neurons, which carry twice the informa-
tion of neurons selective during a single time period. To test this 
hypothesis in our recorded neural data, we randomly permuted 
sensory and memory selectivity across neurons to estimate the 
distribution of selection expected by a random mechanism. As 
predicted, we found that the percentage of selective neurons in 
our neural recordings was less than expected in a random mech-
anism (0.5, P < 1/1,000, n = 522, one-sided permutation test). 
Furthermore, we found that the percentage of selective neurons 
decreased over days (Fig. 7d; slope = −0.12 ± 0.03, P < 1/1,000, 
one-sided bootstrap test), which suggests that the structured 
rotation is learned. The advantage of a compact representation is 
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that it is more resistant against interference and is robust against 
changes in the population (for example, due to learning changing 
the selectivity of neurons)33,34.

Second, our model showed that increasing the structure leads 
to a more efficient transformation from sensory to memory. 
Transitioning between states requires energy35; therefore, minimizing  
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reoriented such that positive weights reflect a match to the A/X sensory preference of the neuron. Stable neurons (n = 209) have positive weights in both 
A/X classifiers (sensory axis: 0.18 ± 0.015, memory axis: 0.17 ± 0.16, both P < 1/5,000 by two-sided bootstrap test). Switching neurons (n = 70) are positively 
weighted in the A/X sensory axis (0.14 ± 0.02) but negatively weighted in the A/X memory axis (−0.12 ± 0.018; both P < 1/5,000 by two-sided bootstrap 
tests). Switching neurons invert their selectivity between axes (difference in weights is 0.27, P ≤ 1/5,000, one-sided permutation test). ‘None’ neurons do not 
have significant selectivity at any time. b, The selectivity (classifier weights) of stable (green) and switching (red) neurons was correlated between the A/X 
sensory (x axis) and A/X memory (y axis) classifiers. Lines show the mean and 95% CIs of bootstrapped linear regressions for each neuron type. Correlation 
was positive for stable neurons (slope mean ± s.e.m. = 0.51 ± 0.069, P < 1/5,000) and negative for switching neurons (slope = −0.38 ± 0.089, P = 0.0004). 
Nonselective neurons (not shown) had no correlation (slope = 0.01 ± 0.063, P = 0.44). All one-sided bootstrap tests. c, Experience increased the correlation 
between A/X sensory and A/X memory classifier weights. Violin plots show the bootstrapped distribution of the slope of linear regression for each neuron 
type on each day (horizontal lines indicate the mean). Stable slope mean ± s.e.m. on day 1 = 0.27 ± 0.12, P = 0.013, n = 60; day 2 = 0.46 ± 0.13, P = 0.0008, 
n = 56; day 3 = 0.72 ± 0.11, P < 1/5,000, n = 43; day 4 = 0.73 ± 0.18, P < 1/5,000, n = 50. Switching slope on day 1 = −0.15 ± 0.17, P = 0.18, n = 22; day 
2 = −0.64 ± 0.16, P < 1/5,000, n = 19; day 3 = −0.45 ± 0.2, P = 0.015, n = 10; day 4 = −0.36 ± 0.2, P = 0.036, n = 19. All one-sided bootstrap tests. Differences 
in the regression slopes between stable and switching neurons: day 1 = 0.41, P = 0.046; day 2 = 1.08, P = 0.0008; day 3 = 1.18, P = 0.0018; day 4 = 1.1, 
P = 0.0004, all one-sided permutation tests. Experience increased the correlation of weights for stable neurons (slope across days = 0.16 ± 0.07, P = 0.009, 
one-sided bootstrap test), but not switching neurons (slope across days = −0.04 ± 0.08, P = 0.27, one-sided bootstrap test). d,e, The combined activity of 
stable and switching neurons rotates the A/X sensory axis into an orthogonal A/X memory axis, shown for day 1 (d) and day 4 (e). Neurons are grouped 
by Phenograph labels (Fig. 5a) and initial sensory period preference (purple indicates A-preferring neurons, green indicates X-preferring neurons). Neurons 
without A/X selectivity were removed. Average z-scored FR differences are plotted for both stable neurons (x axis) and switching neurons (y axis). The circle 
size indicates the time during the sequence (larger radius indicates earlier time point). Labels indicate the time period and preference (that is, preferring A 
or X at 0 ms). A/X sensory (orange) and A/X memory (blue) arrows are the average stable/switching selectivity taken during the sensory (0–100 ms) and 
memory (350–450 ms) periods, respectively. f, Average stable and switching neuron z-scored responses to the four conditions (ABCD, orange; ABC*D, pink; 
XYCD, green; XYC*D, blue). Note that the response to C/C* is aligned to the sensory response to A/X, but not A/X memory, thereby avoiding interference. 
Only neurons with C/C* selectivity are included. Responses to A (purple) and X (green) conditions were merged before C/C* onset for clarity. For all panels, 
permutation tests used 5,000 shuffles and bootstrap tests used 5,000 resamples across neurons. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.
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the magnitude of state change allows for a more efficient transfor-
mation. To measure the efficiency of the transformation from sen-
sory to memory, we calculated the city block distance between the  
sensory and memory classifier weights (Methods). A smaller 
city block distance indicates that fewer changes in neural activ-
ity are needed to transform sensory representations to memories. 
Increasing the structure in the rotational dynamics of the model 
reduced the city block distance, which reflects a more efficient 

transformation (while maintaining A/X memory accuracy, Fig. 7e).  
Similarly, the transformation in our neural recordings was more 
efficient than chance (city block distance = 0.21, P < 1/1,000, 
n = 522, one-sided permutation test; Methods), and the efficiency 
increased across days (Fig. 7f; slope = −0.062 ± 0.035, P = 0.043, 
one-sided bootstrap test).

Altogether, our results show that structured rotation is a more 
compact and efficient mechanism for generating orthogonality 
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over two time periods (for example, AC, XC, AC* and XC* over TP1 and TP2). Responses from the representational layer were used to train classifiers 
and to calculate selectivity. Changing the recurrent weights parametrically controlled the structure in the rotation. Bottom: four example networks with 
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structure in the rotation of the model increased the efficiency of representations. That is, neural network models with increased structure (x axis) required 
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show the mean ± s.e.m. of the percent selectivity decreasing over blocks of trials (slope mean ± s.e.m. = −0.12 ± 0.03, P < 1/5,000, one-sided bootstrap 
test). Format follows Fig. 4e–g. e, Increasing structure in the rotation of the model (x axis) increased the efficiency of the transformation, measured as 
a decrease in the city block distance between the sensory and memory axes (y axis). Format follows b and c. f, In the neural data, the A/X rotation was 
more efficient than expected by chance. Points show the mean ± s.e.m. of the city block distance calculated between the A/X sensory and A/X memory 
and divided by total neuron count (0.21, P < 1/1,000, n = 522, one-sided permutation test against random mechanism). Over blocks of trials, the city block 
distance decreased slightly (slope mean ± s.e.m. = −0.06 ± 0.04, P = 0.04, one-sided bootstrap test). Format follows Fig. 4e–g.
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compared to randomization. It is more compact because it requires 
fewer neurons to represent both sensory and memory information. 
It is more efficient because it requires fewer changes in the neural 
response to move from the sensory to the memory representation. 
In other words, less energy (for example, from a control input or 
making a physical connection) is needed to switch from a sensory 
to a memory representation.

Discussion
Our study found that the brain avoids interference between sensory 
and memory representations by rotating the memory representa-
tion to become orthogonal to incoming sensory inputs. To study 
the interference between representations, we used an implicit learn-
ing paradigm, in which mice were repeatedly exposed to sequences 
of sounds. Experience with the sequences of sounds aligned the 
neural representations of associated stimuli in the mouse auditory 
cortex. This is consistent with previous work in the temporal lobe 
of monkeys, where single neurons learned to respond to pairs of 
temporally associated stimuli15,21–23. Our results extend these find-
ings by showing associative learning leads to the alignment of 
population representations. This alignment facilitated predictions 
of upcoming stimuli, whereby when the contextual stimulus (A/X) 
was presented, the neural population encoded the predicted stimu-
lus (C/C*; Fig. 1i).

The sensory alignment can also explain postdiction. An impor-
tant cognitive phenomenon, postdiction allows new information to 
update the perception of previous events. This is particularly use-
ful for stabilizing perception under noisy conditions28 because an 
ambiguous past percept can be updated to match the most prob-
able scenario given the present stimulus2. However, we found that 
postdiction can also overwrite history when the animal encounters 
an unexpected stimulus. In this way, associative learning can lead 
to interference between sensory inputs, thereby reducing the ability 
of a sensory classifier to accurately represent the history of recent 
stimuli (Fig. 3b).

We found that the brain avoids such interference by rotating sen-
sory information into a memory subspace (Fig. 3d). In our experi-
ments, the A/X memory encoding existed on day 1, but became 
orthogonal to the C/C* sensory axis with experience. Thus, despite 
the associative learning between A/X and C/C* sensory inputs, 
new stimulus inputs did not interfere with the memory of the con-
text (Fig. 3e,g). These population dynamics, which we observed in 
the auditory cortex of mice performing an unsupervised learning 
paradigm, are surprisingly similar to those found in the prefrontal 
cortex of primates performing working-memory tasks (Extended 
Data Fig. 6a shows an example cross-temporal correlation simi-
lar to previous work36,37). Similar dynamics have also been found 
in recurrent neural networks trained on serial-order recall13. Our 
results show that explicit training on a working-memory task is not 
necessary to generate rotational dynamics. Instead, they may be a 
property of how the brain processes and maintains sensory inputs. 
While short-term memory representations have been studied in the 
context of reward-driven behavior, the majority of learning in the 
lifespan of an animal is unsupervised, and so these dynamics may 
exist to avoid interference in those situations.

We examined several different mechanisms that could explain 
the observed rotational dynamics, and found evidence that rota-
tions are structured. Previous work has proposed that orthogonal 
representations could emerge from neurons with random selectiv-
ity12,29. Our results build on this hypothesis, which suggests that 
individual neuron dynamics are not purely random, but enriched 
with two functional neuron types: a stable group that maintains its 
stimulus selectivity and a switching group that switches its selec-
tivity over time (Fig. 5). Previous work in monkeys has found a 
similar dichotomy in working memory, whereby some neurons 
stably represent the contents of working memory38,39, while others 

dynamically change their representation40–42. The relative contri-
bution of stable and dynamic representations to working memory 
has been debated43–46. Our results argue that both response types 
are important: it is the combination of sustained and dynamic 
responses that facilitates the transformation of sensory representa-
tions into orthogonal memory representations, thereby reducing 
interference (Fig. 6).

Adding structured dynamics to the rotation creates a more 
compact and efficient mechanism for generating orthogonal rep-
resentations (Fig. 7d,f). This has several potential advantages. 
Compact (sparse) representations maximize the amount of infor-
mation held in short-term memory34. Similarly, increasing the effi-
ciency of the rotation minimizes the energy needed to transition 
states. In addition, unlike randomization, a structured rotation 
is a functional transformation so that it can be easily imple-
mented in a neural network. Future work is needed to understand 
whether structured rotation is common to all brain regions or if 
it is restricted to sensory cortices, while more cognitive regions 
(for example, the prefrontal cortex) use different mechanisms to 
generate orthogonality.

Future work is also needed to understand the mechanisms gen-
erating stable and switching dynamics. In the current study, we 
did not find any consistent differences in the anatomical location 
or intrinsic properties of stable and switching neurons that might 
explain their functional differences (Extended Data Fig. 10). Of 
course, stable/switching dynamics may reflect other, untested, bio-
physical differences, such as differences in cell type. Alternatively, 
the dynamics may reflect network interactions, whether from local 
recurrent connectivity or nonlinear interactions with top-down 
inputs. The latter may be more likely given that stable and switch-
ing dynamics increased over days and therefore may be learned 
(Fig. 4e–g). Finally, future work is needed to understand whether 
the increase in structural dynamics over days was induced by the 
increasing interference caused by the learned association.
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Methods
Implicit learning paradigm. Mice were exposed to an implicit sequence-learning 
paradigm for four consecutive days. On each day, mice were head-fixed and they 
listened to 1,500 sequences of four chords (ABCD, ABC*D, XYCD and XYC*D). 
Mice were initially naive to all chords and sequences. Recordings lasted about 
1 h and were done at the same time each morning (±1.5 h). As animals were on a 
reverse light-cycle, recordings were performed during their active time.

Within a sequence, each chord lasted 100 ms and was separated by a 75-ms 
inter-sound interval. Inter-trial intervals lasted between 500 and 1,000 ms (random 
uniform distribution). Each chord was a combination of 2 frequencies, all between 
10 kHz and 65 kHz and spaced by 7/12 of an octave. A, B, X and Y sounds were 
lower in frequency than C and C* chords. The frequency of D fell between context 
and C/C* chords. If the frequency of A was less than B, then the frequency of X 
was greater than Y, and vice versa (8/12 of an octave). The frequencies and chords 
were varied across mice. Sound waveforms were created in Matlab, with a sample 
rate of 140 kHz, and played through MF1-S speakers (range of 1 kHz to 65 kHz; 
Tucker Davis Technologies). Speakers were calibrated with a CM16 microphone 
(Avisoft-Bioacoustics) and an Ultramic USB microphone (Dodotronic) to a sound 
pressure level of 70 dB. Sounds were played to the left ear. A light was presented 
100-ms before all sequences, although it did not evoke a response in auditory 
cortex neurons.

Each sequence began with two chords that indicated one of two contexts. In 
the first context, the A chord was always followed by the B chord (the AB context). 
In the second context, the X chord was always followed by the Y chord (the XY 
context). Context AB was most frequently followed by C (rarely by C*), while 
context XY was most frequently followed by C* (rarely by C). All trials ended with 
D. Expected sequences (ABCD, XYC*D) occurred on 68% of trials (equal number 
of ABCD and XYC*D). Unexpected trials (ABC*D, XYCD) occurred on 20% of 
trials (equal number of ABC*D and XYCD). Overall, the AB and XY contexts 
occurred equally per day, as did the C/C* stimuli. This prevented any a priori 
expectation of any stimulus.

The remaining 12% of trials contained an ambiguous third stimulus, which 
was created by combining the frequencies of the C and C* chords. The ambiguous 
stimuli were randomly presented and did not interfere with associative learning. 
They were introduced for reasons unrelated to the current manuscript and 
therefore are excluded from all analyses, with the exception of verifying the 
clustering of the temporal dynamics (as detailed in Extended Data Fig. 8 and the 
section “Testing cluster labels on withheld data”).

Before and after the block of 1,500 sequence trials, the C and C* chords were 
played in isolation for 300 trials to measure the stability of representations. Each 
chord was played for 100 ms, with a random 500−1,000-ms delay between chords.

All animals experienced the same paradigm and therefore were not assigned 
to groups and did not require blinding of experimenters. All trial types occurred 
randomly during the 1,500 trials on a given day, according to their probabilities 
and ensuring equal numbers of trial types. The experimenter was blind to the  
trial details during the preprocessing of the data (for example, filtering, spike  
and sorting).

Neuronal recordings. Animal subjects. All animal procedures were approved 
by the Princeton IACUC and carried out in accordance with National Institutes 
of Health standards. Seven adult male PV-Cre+/− C57BL6 mice were used for 
recording and the passive-learning experiments. Mice were between 13 and 19 
weeks old at the start of recording. Animals had free access to food and water 
and were housed in a reverse light-cycle. The ambient temperature was 20–26 °C 
and the humidity was 20–40%. Experiments were conducted in a soundproofed 
behavioral chamber.

Neural recordings. Neural activity was recorded at 30 kHz using an Intan RHD2000 
system (Intan Technologies). Analog signals for the speakers were split and routed 
to the interface board, allowing for alignment of sound timing and neural activity.

Implant surgery. While under anesthesia, 32-channel silicon recording arrays 
(NeuroNexus) were implanted into the auditory cortex. Six mice were implanted 
with a four-shank probe (eight electrodes per shank), inserted along the anterior–
posterior axis. One mouse was implanted with a one shank probe (32 electrodes 
total). All electrode probes were implanted in right auditory cortex, centered 
on stereotaxic coordinates −2.7 mm anterior–posterior and 4.8 mm medial–
lateral from bregma. Probes were lowered to 970–1,400-µm below the cortical 
surface to target the primary auditory cortex (see Extended Data Fig. 10g for 
approximate neuron locations), although dorsal contacts may have also recorded 
from the secondary auditory cortex. Electrodes were stabilized using KwikSil 
(World Precision Instruments). Three screws (miniature self-tapping screws 
made from no. 303 stainless steel; J.I. Morris) were used to keep the headpost 
(three-dimensionally printed at Midwest Prototyping) and electrode stable. 
Ground wires were wrapped around the screw on the opposite side of the brain. 
Metabond (Parkell) was used to fix all implants to the skull.

After surgery, mice were given several days to recover, and buprenorphine  
was provided during recovery. Before the recording sessions, mice were acclimated 
to handling by the experimenter and head fixation in increments of 15 min.  

The location of the silicon probe was confirmed by histology (see Fig. 1a for an 
example electrode placement from one animal). Electrode tracks were determined 
by labeling for astrocytes (GFAP, green).

Isolating single neurons. Single units were isolated from the raw 30-kHz signal using 
Plexon Offline Sorter. Raw data were imported into Plexon Offline Sorter and 
filtered using a 350-Hz highpass, 4-pole filter. Next, we re-referenced all channels 
to the common average. Using these traces, we identified clusters of spikes. 
Animals were excluded from future analysis if they had fewer than five single units. 
We recorded from ten animals, but only seven had sufficient single-unit activity 
to be included; otherwise no data were excluded from the study. No statistical 
methods were used to predetermine sample sizes, but our sample sizes were similar 
to those reported in previous publications4,17. From the remaining animals, we 
found 522 single units across the 4 days of recording (n = 121 on day 1, n = 124 
on day 2, n = 134 on day 3 and n = 143 on day 4). See Supplementary Table 1 for a 
breakdown of neurons recorded per animal per day.

FR rate calculation. The instantaneous FR of neurons was estimated at each time 
point by inverting the inter-spike interval. This trace was smoothed with a 1-ms 
boxcar and downsampled to 1,000 Hz. Data were then segmented by trial start and 
end times. For sequence data, trials were taken from 70-ms before the A/X chord 
to 355-ms after the end of the D chord. For the C/C* chord alone, trials were taken 
to start 70-ms before chord onset and end 280-ms after the chord ended. Data were 
smoothed again with a 20-ms boxcar. All time labels in figures indicate the leading 
edge of any time frame or window (that is, including data before that labeled 
point). In example FR plots (Fig. 1b), the mean and s.e.m. are shown; expected 
conditions were randomly downsampled to match the trial count of unexpected 
conditions (n = 150 trials per condition). Preprocessing of FR data (segmentation 
and smoothing), computation of the z-scored FR difference and Phenograph 
clustering were performed in Matlab 2016 (Mathworks). All other analyses 
were performed in Python 3.5.5. For the Python analyses (jupyter notebook47), 
we utilized the scipy (v.0.19.1)48,49, sklearn50 numpy (v.1.13.1)51 and pandas (v. 
0.20.3)52 packages (specific functions referenced below). All plotting was done with 
matplotlib (v.3.0.3)53. The network model (Supplementary Figs. 4 and 7 and Fig. 7) 
was written in Python 3.7.3 using PyTorch v.1.0.1.

Encoding axes (classifiers). Training classifiers. All classifiers were trained using 
the same procedure. Classifiers only differed in their training period and condition 
groupings. Each classifier was trained on each day for each animal, using the vector 
of the averaged FR of simultaneously recorded neurons. The FR was averaged 
over a 100-ms time period, starting 10-ms after stimulus onset (to account for the 
delay in sensory response). This resulted in a matrix of mean FRs for each neuron 
and each trial (that is, matrix size = neurons × trials). See Supplementary Table 
2 for a list of classifiers and their details. When forming groups for all classifiers, 
trials were balanced across conditions (ABCD, XYCD, ABC*D and XYC*D), and 
a subset (10%) were withheld for testing. The resulting classifier is a hyperplane 
defined by its orthogonal vector (size = neurons) and an intercept (size = neuron).

Classifier type. We used a standard linear support vector machine classifier for all 
classification analyses. The linear classifier relates x (features) to y (output) via a 
linear equation, with weights (w) and an intercept (b) as follows:

f xð Þ ¼ wTx þ b

Using the projection (f(x)), inputs (x) can then be classified into categories. 
Here, we used classifiers to map N-dimensional FR data onto a one-dimensional 
(1D) encoding space. This allowed us to understand how the FR data encodes a 
given stimulus (that is, A versus X).

For cross-validation, a condition-balanced set of trials (10% of all trials) were 
withheld and used in all future analyses and figures. The remaining trials were 
used to train the classifier. To prevent bias in the classifier, we downsampled 
the expected trials to match the unexpected trial count. To ensure that all of the 
training trials were incorporated into the classifier, we downsampled the expected 
data 100 times and trained a classifier on each sample. The final classifier was 
calculated by taking the mean (intercept (b) and weights (w)) of these 100 trained 
classifiers.

To train the classifier, we used the stochastic gradient descent SGDClassifier 
function in the sklearn.linear_model package (sklearn v.0.19)50 for Python 
3 (v.3.5.5). This method fits the classifier weights (w) and intercept (b), by 
minimizing the error function, which is a combination of a loss function 
(L(y,f(x)) = hinge loss) and regularization (R(w) = elastic net) as follows:

E w; bð Þ ¼ 1
n

Xn

i¼1

Lðyi; f ðxiÞÞ þ αRðwÞ

Classifier regularization. To minimize overfitting of the classifiers, we used 
elastic net regularization (R(w) in the above equation). Elastic net regularization 
combines the L1 and L2 norms to increase the sparsity and to decrease the length 
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of the weights (w), respectively. The alpha (α) parameter determines the amount of 
regularization. Parameters were the same for all classifiers (neural data and model): 
the L1 ratio (the elastic net parameter specifying the ratio of L1-to-L2 penalties) 
was set to 0.65, α (the regularization amount) was set to 0.01, the learning rate was 
set to 0.00001 and the number of iterations was set to 1,000.

Testing the generalizability of results across classifier hyperparameters. As 
shown in Supplementary Fig. 3, we varied the hyperparameters and classifier 
type to ensure that neither affected our results. We tested hinge, log and squared 
loss-linear classifiers. Hyperparameter ranges were α (regularization level) =  
[0, 0.001, 0.01, 0.1] and L1/L2 ratio (elastic net ratio) = [0, 0.25, 0.5, 0.65, 0.75, 1].

Sensory classifiers. Sensory classifiers distinguished between two sounds during 
their presentation. The A/X, B/Y and C/C* sensory classifiers were trained using 
the average stimulus-evoked FR activity (A/X = 10–110 ms, B/Y = 185–285 ms 
and C/C* = 360–460 ms). Condition groups were the two possible stimuli (for 
example, A/X classifier distinguished A and X trials). Note that an additional 
C/C* sensory classifier was trained using the response to the C/C* chords 
(100 ms) presented in isolation (Extended Data Fig. 3). Similar results were found 
with both the C/C* classifiers.

Memory classifier. The A/X memory classifier was trained to classify trials by their 
context (AB or XY) based on neural activity during the presentation of the C/C* 
stimulus (360–460 ms).

Relationship between the B/Y classifier and the other classifiers. The probabilistic 
transition from A/X to C/C* allowed us to balance the trials used in their classifiers 
and, thus, independently decode both the A/X and C/C* representations during 
the sequence. In contrast, the transition from A/X to B/Y is deterministic (all A 
stimuli were followed by a B stimulus and X by Y). Because of this, we could not 
balance A/X and B/Y trials when constructing a B/Y classifier; therefore, the B/Y 
classifier is only differentiated from the A/X sensory and memory classifier by the 
time period of the response. Unsurprisingly, on day 1, A/X and B/Y sensory axes 
were aligned (consistent with their association), but this decreased with experience 
(Extended Data Fig. 1f). In contrast, the B/Y and C/C* sensory axes were not 
aligned (Extended Data Fig. 1g). This may reflect the fact that the C/C* stimulus 
was already fully predicted by the A/X stimulus, and so the subsequent B/Y 
stimulus did not add predictive value24. Importantly, this does not affect the results 
relating the A/X sensory, C/C* sensory and A/X memory axes.

Cross-temporal classification. To study the evolution of A/X context information, 
we performed cross-temporal classification. We trained classifiers to distinguish 
between A and X conditions using 25-ms time bins of FR data, stepping by 10 ms, 
throughout the sequence. These classifiers were then tested on their ability to 
distinguish A/X trials on withheld trials (across the same set of 25-ms bins). This 
provided an estimate of how well the classifiers generalized across time (Extended 
Data Fig. 6a).

Tracking the evolution of sensory and memory information within a day. In 
addition to training a single classifier for the entire day, we trained classifiers 
within a day. This allowed us to follow the time course of learning within a 
session. To train within day, classifiers were trained on 6 blocks per day, with each 
block consisting of 500 trials, stepped by 200 trials. For each block of trials, we 
balanced conditions and used cross-validation (withholding 10% of trials) to test 
performance and to make projections.

Within-day classifiers were used to study the angular relationship between 
encoding axes during learning (Figs. 2b and 3g) and to measure the city block 
distance between the A/X sensory and A/X memory classifier (Fig. 7f). To 
combine across animals, classifier weights were length-normalized by the number 
of neurons. Within-day classifiers showed similar trends to whole-day classifiers 
when decoding responses (Supplementary Fig. 2). Differences are likely due to the 
limited number of trials (limiting the statistical power) available for testing the 
classifier performance within a block of trials (12 trials per condition per animal).

Projection onto the encoding axis. To study how the high-dimensional population 
activity encodes variables within the sequence, we projected the FR activity 
on withheld trials into a 1D encoding space defined by the trained classifiers. 
The projections are signed on the basis of labels chosen during training. For 
example, on the A/X sensory axis, a negative projection indicates A encoding 
while a positive projection indicates X encoding (see Fig. 1c for a schematic of the 
projection).

To examine how this encoding evolved over time, we projected neural activity 
over the time course of the sequence. For each trial (withheld from training, 
n = 1,064 trials), we calculated the average vector of neuron FR in 25-ms time 
bins, stepping by 10 ms, over the course of the sequence presentation. At each time 
bin (t), we took the dot product between each FR vector (FR(t)) and the relevant 
encoding axis (w, size = neuron), and then added its intercept (b) as follows:

ProjectionðtÞ ¼ FRðtÞ  w þ b

Classifier training and projections were completed for each trial (withheld 
from training) on a mouse-by-mouse basis (that is, each day is separate and we 
did not create a pseudopopulation of neurons across days). Before combining 
trial projections across mice, we z-scored the projections across conditions (that 
is, subtracted the mean and divided by the standard deviation, calculated from all 
conditions). Once, z-scored we could combine trial projections across animals to 
study population encoding. Note that this z-score captures the relative separation 
between conditions across time and ignores any absolute drift in FRs occurring 
over time.

To examine how encoding of context (AB versus XY) and C/C* stimulus 
changes over time, we performed two-sided t-tests (function: ttest_ind from 
scipy.stats package) on each time bin (d.f. = 1,062). Although we did not test for 
normality, the z-scoring procedure was intended to normalize the data to support 
the assumption of normality underlying the t-test. The neural population is said to 
be carrying significant information about a stimulus (or memory) if the associated 
P values is ≤0.001, Bonferroni-corrected for multiple comparisons across time (for 
example, Fig. 1d,e).

Strength of encoding. We defined the ‘strength of encoding’ as a metric of 
classifier accuracy, which combines both the magnitude and accuracy of the trial 
projections. Recall that the projection of a trial on a given axis indicates how 
much activity of that trial represents either the negative or positive label (for 
example, A and X respectively, on the A/X sensory axis). Therefore, to combine 
trial projections across all conditions (and animals), we inverted (that is, flipped 
the sign of) the projection of trials with a negative label. For example, to test A/X 
encoding (Fig. 1f, n = 1,064 withheld trials per day), we inverted the projection of 
A condition trials (ABCD and ABC*D).

Measuring classifier accuracy with area under the curve. After training, each 
classifier defines a hyperplane in feature space (FR of neurons) that separates 
samples as belonging to one of two conditions (for example, AB or XY). This label 
may be correct (true positive or true negative) or incorrect (false positive or false 
negative). To supplement analyses using the projection onto encoding axes, we 
calculated the area under the curve (AUC) of the receiver operator characteristic 
curve to measure classifier performance (Supplementary Fig. 1; using sklearn.
metrics package). The AUC statistic measures how well the classifier is able to 
separate the two distributions, whereby an AUC of 1 indicates perfect performance, 
an AUC of 0.5 indicates random chance and an AUC < 0.5 indicates that the 
classifier assigned samples to the wrong condition label. The AUC was calculated 
for fixed time periods and in a sliding window moved over the sequence time 
course (Extended Data Fig. 2). The AUC showed qualitatively similar effects 
as the projections onto the encoding axis. In the main manuscript, we focused 
on the projections because they show on a trial-by-trial basis whether neural 
representations move in the predicted or unpredicted direction and provide a more 
direct measure of effect size.

Statistics and reproducibility. Almost all analyses used one of three different forms 
of nonparametric permutation tests: (1) bootstrap to estimate the distribution of 
a statistic, (2) bootstrap to estimate the distribution of a linear regression and (3) 
permutation test to test for differences between groups. Below we detail these  
three tests.

Bootstrapped estimates of the distribution of a statistic. Bootstrapped distributions 
were used to estimate distributions for plotting and for statistical tests. In 
general, the procedure involved resampling data (for example, trials or neurons) 
with replacement 5,000 times54 and recalculating a statistic (for example, mean 
projection, angle or principal components (PCs)). Next, this distribution was 
tested against a null hypothesis (for example, tested against zero). The percent of 
the bootstrapped distribution above or below the null hypothesis value was taken 
as the likelihood that the neural data were greater than (or less than) the null 
hypothesis.

For example, we tested the significance of encoding strength (accurate versus 
inaccurate) during each time period. We randomly resampled from the observed 
trials with replacement54. Using this bootstrapped distribution, we could determine 
whether the encoding strength (that is, accuracy) was significantly different from 
zero (that is, significantly positive/correct or negative/incorrect). To do this, we 
estimated the probability that the observed response was zero by measuring the 
percent of the bootstrapped distribution that was above or below zero, for positive 
and negative observed mean projections, respectively (in this example, we doubled 
the probability and report the two-sided P value).

Bootstrapped estimate of the distribution of linear regressions. To measure 
changes across time (for example, days or blocks), we calculated linear regressions 
(scipy.stats.linregress) across time points. For example, we measured the change 
in encoding strength across days (Figs. 1i and 3b), the change in angle between 
classifiers (Figs. 2b and 3g) and the change in relative structure in the rotation  
(Fig. 4e–g). To estimate the distribution of values of the linear regression, we  
used a bootstrapped procedure, as described above (5,000 resamples). Using  
this distribution, we calculated the mean and standard deviation of the slope  
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(or r values) and plotted the mean trend line and their 95% confidence intervals 
(CIs; that is, ±1.96 times the standard deviation of the trend lines). Finally, we 
tested whether the observed slope was significant by estimating the probability 
that the observed slope was zero and by measuring the percent of the bootstrapped 
distribution that was above or below zero, for positive and negative observed 
slopes, respectively (one-sided P value).

Permutation test for differences between groups. We used permutation tests to test 
the significance of an observed difference across groups. First, we calculated the 
observed difference between group means. Then, the group labels were permuted 
(4,999 times), and the difference between the means of the shuffled groups was 
calculated. The shuffled and non-shuffled differences were combined to create 
a null distribution (size of 5,000). This null distribution shows the differences 
expected given no actual difference between the two groups. The likelihood of 
our observed difference was then estimated as its percentile within the full null 
distribution.

For example, we used a permutation difference test to compare the A/X 
encoding strength along the A/X sensory axes versus the A/X memory axes 
(Extended Data Fig. 6b). First, we calculated the difference of mean encoding 
strength between axes. Then, we randomly permuted the classifier labels (for 
example, A/X sensory or memory) across trials (4,999 times) and recalculated 
the difference in mean encoding strength. This distribution was combined with 
the original observed difference to create the null distribution, which was used to 
calculate the significance of the observed difference.

Assumptions underlying the statistical tests. One advantage of nonparametric tests 
is that they do not make assumptions about the underlying distribution. Note that 
there is a lower bound on nonparametric significance measures; exact P values 
below 1/N cannot be reported, where N is the number of shuffles/resamples. 
Parametric t-tests were used when measuring differences between trial projections 
onto a specified encoding axis (for example, Fig. 1d). These data were z-scored 
before the t-test, supporting the underlying assumption of normality, although 
normality was not formally tested for each time bin. In addition, these results were 
confirmed with nonparametric tests.

For all statistical tests, all neurons and trials from the four relevant conditions 
were used. As detailed above, the experimental paradigm was repeated in seven 
animals.

Additional information on research design is available in the Nature Research 
Reporting Summary.

Calculation of angles between axes. To examine the relationship between 
representations, we measured the angle between encoding axes (that is, the angle 
between the trained classifiers/hyperplanes). To estimate the angle across animals, 
classifier weights were normalized to length 1 and combined across animals (per 
day or per block). Using these vectors (one per hyperplane; size = neurons), we 
calculated their angle as follows:

Angle ¼ arccos
A  B
Ak k Bk k

� �

To ensure that the angle was not biased by outliers within the neural 
population, we bootstrapped across neurons, recalculating the angle on each of 
5,000 resamples; these distributions were then used when measuring changes in 
angles across days with linear regression. The reported angles within a day were 
calculated by taking the mean and standard deviation across all blocks within a 
day (Fig. 3g). These results were not qualitatively different from angles calculated 
between classifiers trained on all trials within a day.

When building the A/X and C/C* classifiers, we labeled conditions such 
that associated stimuli shared the same sign (A and C were negative, X and C* 
were positive). Therefore, angles between the classifiers that are less than 90° 
correspond to the classifier responses aligning with the predicted, expected 
associations (for example, neurons that prefer A (or X) also prefer C (or C*)). 
Angles greater than 90° indicate that the selectivity of the populations is aligned 
with respect to unexpected pairings (for example, neurons that prefer A (or X) 
also prefer C* (or C)).

Testing the correlation of single neuron responses to A/X and C/C*. We found the 
alignment between the A/X sensory and C/C* sensory axes (Fig. 2b). To relate this 
to the selectivity of single neurons, we calculated the selectivity of each to the A/X 
and C/C* stimuli (see the section “Temporal selectivity profiles”). We measured 
the correlation between A/X and C/C* selectivity across neurons with linear 
regression (variance estimated by bootstrapping across neurons). To test whether 
this relationship changed across days (Fig. 2c,d), we performed a regression on the 
slope across days.

Neural activity in 2D state spaces (dimensionality and angle). To understand how 
the neural population encoded two dimensions at once, we projected neural 
activity over time onto two encoding axes, creating a 2D space. For example,  
Fig. 2a shows the encoding of A/X sensory and C/C* sensory information along 

the x and y axes, respectively. Projections were as described above in “Projection on 
the encoding axis”.

Calculation of PCs and dimensionality of neural trajectories in state space. To 
understand the dimensionality within each 2D state space, we performed PC 
analysis (sklearn.decomposition.PCA) on the distribution of the mean projections 
of all four conditions within the 2D state space (that is, concatenating the time 
course from ABCD, ABC*D, XYC*D and XYCD). This resulted in two PCs. Each 
PC captured a proportion of the variance in responses within the 2D space, which 
defined the explained variance ratio (EVR) of that PC. The EVR of PC1 was used 
to estimate the dimensionality of the neural trajectories within the 2D state spaces. 
A high EVR for PC1 indicates low dimensionality because PC1 is explaining most 
of the variance. Meanwhile, if PC1 EVR equals half, the dimensionality is high 
because both PCs explain similar amounts of variance, which occurs when the 
trajectories move equally in all dimensions (Fig. 3h).

We used a permutation test to test whether the observed dimensionality was 
lower than expected by chance (Fig. 3h). For this, we created a null distribution 
of projections into the 2D state space by randomly permuting (4,999 shuffles) 
the time labels within the sequence of each point, separately in both the x 
and y dimensions. For each permutation, we recalculated the EVR. The null 
distribution (5,000; shuffles plus the observed value) was used to estimate the 
probability of randomly observing a value greater-than-or-equal to the original 
EVR (one-sided test).

Statistics on EVR and PC angle. We used a bootstrap procedure (as described 
above) to estimate the distribution of PC angles (that is, violins in Fig. 3h) and the 
EVR of the PCs. The bootstrap process involved randomly sampling trials (5,000 
with replacement) within each condition group, projecting neural activity into the 
state space, calculating the mean trajectory per condition and then recalculating 
the PCs (and respective EVRs). These distributions were used for calculating 
regressions (one-sided test) and estimating the variance of the distributions.

We use a permutation procedure (as described above) to compare the PC 
angles and EVRs across state spaces. For this, we shuffled (4,999 permutations) 
mean data projections across state spaces and recalculated the difference in PCs, 
angles and EVR (5,000; shuffles plus the observed value). With this distribution, 
we estimated the probability of observing the original difference across state 
spaces under the null hypothesis that there was no difference between state spaces 
(one-sided test).

Dimensionality in full neural space. To study global changes in the neural space, 
we also calculated the dimensionality of neural responses in the full N-dimensional 
neural space (where N is the number of neurons). The analyses followed the same 
framework as the dimensionality calculations within the encoding state spaces. 
For each day, we combined neurons across animals to create a pseudopopulation. 
We averaged the FR per condition (ABCD, ABC*D, XYCD and XYC*D, balancing 
the number of trials) within 25-ms bins, stepped by 10 ms. The average response 
was calculated for each condition around the presentation of C/C* (340–520 ms) 
and PCA was performed on the concatenated data (size = (condition × time) × N). 
The distribution of EVRs was estimated with a bootstrap; resampling neurons 
with replacement per day and then recalculating the PCs. These were then used to 
estimate the change in EVR across days (Extended Data Fig. 5e).

Estimating trial-by-trial correlations between C/C* encoding and A/X sensory and 
memory encoding. To test whether the A/X sensory and memory representations 
affect sensory processing, we correlated the A/X sensory and memory responses 
on a given trial with the strength of C/C* response (Extended Data Fig. 7). To 
understand how A/X encoding strength influences future sensory processing, we 
took A/X encoding 50-ms before the C/C* stimulus and correlated it with C/C* 
encoding strength (taken during the C/C* stimulus: 360–460 ms). The timing of 
A/X and C/C* encoding were separated to ensure any observed relationships did 
not simply recapitulate the alignment of the axes.

We examined expected and unexpected stimuli independently (n = 532 trials 
for both groups; all trials withheld from classifier training). Responses to negatively 
coded trials (for example, A trials and C trials) were inverted such that all positive 
values indicate correct encoding and negative values indicate incorrect encoding. 
We used bootstrapped linear regression to correlate the strengths of the C/C* 
representations and the A/X sensory or A/X memory representation.

Timing of crossover from A/X sensory to A/X memory encoding. To gain insight into 
the timing of the A/X rotation, we estimated the moment during the sequence 
when A/X encoding switched from A/X sensory to A/X memory encoding 
(Extended Data Fig. 6c). The crossing time point was defined as when the A/X 
encoding was stronger along the A/X memory axis than the A/X sensory axis. The 
crossover time was restricted to 25-ms after sequence onset to avoid early spurious 
crossovers. A bootstrap procedure (5,000 resamples of trials with replacement) 
estimated the variance in timing and changes over days.

Rotation of A/X sensory to A/X memory. Temporal selectivity profiles. A/X 
selectivity changed over the sequence time course, from a sensory representation 
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to a memory representation. To understand how the dynamics of individual 
neurons supported this transformation, we measured the temporal selectivity 
of each neuron (n = 522 neurons). Selectivity was measured as the difference 
in FR between the AB and XY trials (n = 600 trials). All four conditions were 
balanced (n = 150 trials), which ensured that A/X selectivity did not reflect the 
C/C* stimulus response. The A/X FR difference was calculated in 25-ms time bins 
(stepping by 10 ms) over the entire trial (from −160 ms to 790 ms, relative to the 
onset of the A/X stimulus, creating 96 time bins). To normalize the FR difference 
of each neuron, we z-scored its FR difference (for each time bin, t) against a null 
distribution, which was created by randomly permuting the trial labels (n = 1,000 
shuffles of AB and XY trial labels).

zFRðtÞ ¼ FR differenceðtÞ �mean FR difference shufflesðtÞð Þ
s:d: FR difference shufflesðtÞð Þ

To measure the changes in selectivity within a day, we calculated the z-scored 
FR difference for each neuron in 6 blocks per day (again balancing trials by 
condition; 500 trials per block, stepped by 200 trials). A similar approach was used 
to calculate z-scored FR differences to the C/C* stimulus (grouping trials by C/C*).

To illustrate how A/X rotational dynamics avoid interference from the C/C* 
sensory input, we plotted how stable and switching neurons respond to the four 
conditions (Fig. 6f). The z-scored FR response of each neuron to each of the four 
conditions (ABCD, ABC*D, XYCD and XYC*D) was estimated by calculating 
the difference in response to that condition, relative to the mean response to all 
conditions (trials were balanced across conditions). To combine and average 
condition responses across neurons within a group (stable and switching), we 
inverted neurons with a preference to X. As the goal of this analysis was to plot the 
response to the C/C* stimulus, we only included neurons selective to C/C* (similar 
results were seen when including all neurons). To declutter the plot, we averaged 
the condition traces across A and X conditions before the onset of C/C*.

Testing for structure in the rotation: measuring the proportion of conjunctive 
and single selectivity in the neural population. The three different mechanisms 
for rotation (Fig. 4a–c; independent, random and structured) make different 
predictions about the number of neurons selective for A/X in one time period 
(single neurons are selective during either sensory or memory) or both time 
periods (conjunctive neurons are selective during both sensory and memory). 
The independent mechanism predicts more single neurons than expected by the 
random mechanism. In contrast, a structured rotation predicts more conjunctive 
neurons (and fewer single neurons). Therefore, to differentiate between these 
mechanisms, we determined the A/X selectivity of each neuron during the sensory 
and memory time periods. A neuron was considered selective for a given time 
period if its z-scored FR difference was significant at any time point during that 
time period (abs(z-score) ≥ 1.96, or P ≤ 0.025, Bonferroni-corrected by the number 
of time points). Significance was independently measured in both the A/X sensory 
time period (0–100 ms) and the A/X memory period (350–450 ms). In rare cases 
where multiple crossings occurred within the time range, the selectivity was 
determined by the mean response.

For each time period, a neuron belonged to one of three categories: it 
represented the A stimulus, X stimulus or was not selective for either (a null, or 0, 
neuron). Combining across the two time periods (sensory and memory), neurons 
can be in nine different categories (Supplementary Table 3). These can be grouped 
into three categories: conjunctive neurons that are selective during both time 
periods (AA, XX, AX and XA); single neurons that are selective during only one 
time period (A0, X0, 0X and 0A); and nonselective neurons that are not selective 
to A/X in either time period (00). On a given day (or within a block), we calculated 
the proportion of recorded neurons in each selectivity category (conjunctive or 
single). To correct for the overall degree of selectivity in the network, we used the 
conjunctive/single ratio as our main measure of structure in the rotation.

Nonparametric test against the random mechanism. While the independent 
mechanism predicts more single neurons than the random mechanism, the 
structured rotation predicts fewer single and more conjunctive neurons than 
the random mechanism. By definition, the random mechanism argues that 
changes in selectivity should have no relationship over time. Therefore, to test 
against the random mechanism, while controlling for overall selectivity, we 
created a null distribution by permuting selectivity across neurons within each 
time period (n = 1,000 permutations), thereby breaking any relationships in 
selectivity across time periods. We determined the likelihood of our observed 
results by measuring the percentile of our observed neural proportions in the 
null distribution (Fig. 4e–g).

To examine changes over time (blocks and days), we first controlled for changes 
in the number of selective neurons by z-scoring. To this end, we subtracted the 
mean of the random chance distribution and divided it by the standard deviation 
of the random chance distribution (Fig. 4e–g). To estimate the distribution of 
z-scored values, we used a bootstrap procedure (5,000 resamples of neurons, per 
block per day). For each bootstrap, we recalculated the z-scored proportions of 
conjunctive and single neurons and used the resulting distributions to estimate 
changes across days.

Testing for structure in the rotation: chi-squared and binomial tests. We tested 
the full table of A/X temporal selectivity of neurons from all 4 days (n = 522; 
Supplementary Table 3) against random chance by using a probabilistic model 
followed by chi-squared and binomial tests. For each time period, a neuron has a 
probability of being selective to either A or X. The probability of being selective 
to A or X during the sensory or memory period can be written as psenA  or psenX  and 
pmem
A  or pmem

X , respectively. We assumed the probability per stimulus is equal: 
ps = psenA = psenX  and pm = pmem

A = pmem
X . Here, ps and pm are the probabilities of 

selectivity during the sensory period and memory period, respectively. Therefore, 
the probability of nonselectivity during the sensory period and memory period 
can be written as 1 − 2ps and 1 − 2pm, respectively. Because the random mechanism 
predicts selectivity will be independent across time, the probability of each of the 
nine categories can be estimated by multiplying the probabilities of selectivity in 
each time period. Supplementary Table 4 shows the probabilities of each of the 
nine A/X selectivity types as predicted by a random mechanism.

Because we were interested in comparing the levels of conjunctive neurons 
against random, we used the counts of single (A0, X0, 0A and 0X) and nonselective 
neurons (00) to fit ps and pm (using the scipy.optimize.minimize function, 
by minimizing the sum of squared errors between the predicted single and 
nonselective counts). Using the fitted values for ps and pm, we calculated the 
probabilities of each of the nine neural selectivity categories. Together, these nine 
probabilities can be compared to the observed proportions in the neural data with 
chi-squared and individual binomial tests.

Testing for structure in the rotation: generating and testing random selectivity  
data. To further test against a random mechanism and to ensure that our results  
were not due to smoothing over time, we generated random temporal selectivity 
profiles and performed the same set of analyses as were applied to our neural data. 
Random profiles consisted of responses that ranged from a sustained response 
(profile 0) lasting the full sequence of 550 ms to a short 50-ms response (profile 20),  
with intermediate profiles decreasing linearly after the initial 50-ms response 
(Supplementary Figs. 5 and 6). Next, each response profile was multiplied by 
random values drawn from a standard normal distribution (μ = 0, σ = 1) to generate 
A/X selectivity. Finally, we smoothed this random data using kernels between sizes 
80 ms and 400 ms (lowess function in Matlab). To avoid smoothing artifacts, time 
points were padded by the size of the largest smoothest kernel. This process was 
repeated 1,000 times for each profile and smoothing level to create a distribution of 
randomly generated temporal selectivity profiles.

The resulting random selectivity data were analyzed in the same manner as the 
neural data, calculating selectivity during A/X (0–100 ms) and C/C* (350–450 ms). 
For each ‘random’ population, we calculated the number of neuron counts per A/X 
temporal selectivity pattern (Supplementary Table 3). Note that the random data 
cannot yield similar selectivity as our data, as the percentage of selective neurons 
was much greater than expected by chance (36%). So, we had to set a ‘selectivity’ 
threshold to reproduce the observed neural selectivity. Using these random 
selectivity counts, we tested whether random data could generate a structured 
rotation to the same degree as observed in the neural data. Supplementary Fig. 
6a shows the resulting chi-squared values on random data, and Supplementary 
Fig. 6b compares the results to the neural data. Supplementary Fig. 6d shows the 
percentage of random populations that were significant (P ≤ 0.05) for the three 
binomial tests that were all significant in the neural data.

Using the same techniques applied to the neural data, for each ‘random’ 
population, we obtained z-scores indicating whether the selectivity proportions  
(of single and conjunctive neurons) of the random population were unexpected by 
a random mechanism. Next, we compared the level of structure observed from our 
neural data to what was observed in the randomly generated data. Supplementary 
Fig. 6e,g,i shows how far away, in standard deviations, the neural results were 
from the results generated for each profile/smoothing combination of randomly 
generated data. Supplementary Fig. 6f,h,j compares neural data to the combined 
results from all randomly generated data.

Clustering of temporal selectivity profiles. Phenograph. To explore the structure 
in the temporal selectivity profiles across our neural population, we used the 
unsupervised Phenograph clustering algorithm55 to cluster the profiles of all 
recorded neurons, across all days (n = 522). Phenograph works by (1) forming a 
connected graph of data points, where the edge weight between two nodes is the 
Euclidean distance in their temporal profile of selectivity, and then (2) clustering 
points based on the community structure within this connected graph. Each 
community has a ‘modularity’, which compares the density of edges within and 
between identified communities. The Louvain Community algorithm56 iteratively 
discovers communities within the K-nearest neighbors, and collapses connected 
nodes into groups until modularity is maximized55. We chose the Phenograph 
algorithm because it does not require a priori specification of the number of 
clusters and is used in several fields31.

Varying the parameter (k) in Phenograph. The Phenograph algorithm is 
unsupervised, whereby the only parameter is the number of local connections (k) 
that are used to define the local communities. Previous work has shown that the 
algorithm is robust against changes in this parameter31. Based on recommendations 
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from this work, we initially chose k = 40. As shown in Extended Data Fig. 9b, we 
confirmed the stability of clustering by systematically varying k and calculating two 
measures of clustering: the modularity statistic of Phenograph and the silhouette 
score of the discovered clusters57.

Validating Phenograph clustering: d-prime. We used d-prime to validate that the 
clusters were not overlapping in space. For each pair of clusters being compared, 
the Euclidean distance between cluster means (μ1 and μ2) is calculated in the full 
96-dimensional space. This is divided by the square root of the average of the 
variances (σ2

1 and σ2
2) within each cluster as follows:

d0 ¼ distðμ1; μ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 σ21 þ σ22ð Þ

q

Following the methods described above, we used a permutation test (shuffling 
cluster labels 999 times) to test whether the observed d-primes were significantly 
greater than expected by chance Extended Data Fig. 9a.

Validating Phenograph clustering: UMAP. To further verify our observed clusters, 
we used the uniform manifold approximation and projection algorithm (UMAP)58 
to project the temporal profiles of single neurons into two dimensions (Extended 
Data Fig. 9c).

Validating Phenograph clustering: K-means clustering. We also compared the 
Phenograph clustering to K-means clustering (sklearn.cluster.KMeans) using 
the same data. As K-means performs poorly in high dimensional spaces59, we 
clustered points within the reduced dimensional UMAP space. For each fit, we 
used 1,000 random restarts. All function parameters were set to the default. Unlike 
Phenograph, K-means requires the number of clusters to be prespecified. To 
test how the number of clusters affected the clustering, we varied the number of 
clusters prespecified and compared the resulting silhouette scores (Extended Data 
Fig. 9d). To facilitate the interpretation of the silhouette score, we performed the 
same clustering on different datasets (random data and C/C* temporal selectivity 
profiles). The random data were generated by smoothing the Gaussian noise with 
the same number of neurons and time points as the neural data.

Validating Phenograph clustering: cosine distance matrix. To assess the similarity 
of the temporal profiles of all recorded neurons, we measured the cosine distance 
(scipy.spatial.distance.cdist) between the vectors (Fig. 5c). Cosine similarity is 
defined as follows:

1� u  v
uk k vk k

where −1 is maximally dissimilar and 1 is maximally similar.

Testing cluster labels on withheld data. We tested whether the dynamics of stable 
and switching neurons were consistent across condition groups (for example, 
trials where C, C* or Cmix stimuli were presented). For example, the dynamics 
of A/X selectivity could be calculated using only C trials (that is, ABCD and 
XYCD). We applied the original Phenograph labels to these selectivity profiles 
and measured the correlation between the selectivity in the subset of trials and 
the original dataset (Extended Data Fig. 8a,b). Note that because only trials with 
the same one-third of stimuli were used, A/X FR differences could not arise from 
interactions between A/X and the C or C* stimulus. Furthermore, the ABCmixD 
and XYCmixD datasets were never included in the original A/X z-scored FR 
difference or Phenograph clustering. Nevertheless, stable and switching neurons 
showed similar A/X response profiles and averaged selectivity on these withheld 
trials (Extended Data Fig. 8a,b).

Measuring the contribution of stable and switching neurons to the A/X encoding 
axes (classifiers). Average classifier weight for stable and switching neurons. To 
understand how the stable and switching functional neuron types contributed 
to the A/X sensory and memory axes, we calculated the distribution of 
classifier weights for each cell type (Fig. 6a). To reduce noise, we post-hoc 
identified and isolated neurons that were selective for none of the time periods 
(P > 0.025, Bonferroni-corrected). To combine weights from both A-preferring 
and X-preferring neurons, the weights of all initially A-preferring neurons 
were inverted (that is, multiplying their weights by −1). Therefore, the weight 
distributions in Fig. 6a reflect similarity with the initial preference of that neuron 
(either A or X). We combined the weights of all neurons (across days and animals) 
for each neuron group (stable, switching and none).

Correlation between sensory and memory classifier weights. We tested how A/X 
selectivity of individual neurons changed between the A/X sensory and A/X 
memory time periods by linearly regressing the weights of the A/X sensory and 
A/X memory classifiers for each group of neurons (stable, switching or none; 
Fig. 6b). The weight vector within each animal was length-normalized before 
combining weights across all animals and days. Statistical significance of the 

linear regression was determined with a bootstrap test (as described above, 5,000 
resamples of neurons with replacement). To test whether experience changed  
the linear relationship between A/X sensory and A/X memory classifier weights, 
we calculated the linear regression between weights on each day (Fig. 6c;  
bootstrapping to assess significance). To test whether the linear relationship in 
weights was significantly different between the switching and stable neurons, 
we compared the observed difference in slope to a randomly permuted, null 
distribution created by shuffling stable and switching labels across neuron weights 
(4,999 times; Fig. 6c).

C/C* selectivity in functional neuron types. The representation of A/X and C/C* 
became more similar with experience (Fig. 2). To test whether these changes 
were specific to either stable or switching neurons, we examined C/C* stimulus 
temporal selectivity of both neuron types for both expected and unexpected 
sequences (Extended Data Fig. 10e). For each neuron group (stable or switching), 
we plotted their A/X and C/C* z-scored FR differences. To combine across all 
preferences within a group, we inverted the A/X selectivity and C/C* selectivity 
of neurons that initially preferred A. This means that the A/X responses are 
relative to initial preference. Likewise, C/C* responses reflect whether the 
average selectivity of the neuron group aligns with expected (AC/XC*, positive 
responses) or unexpected (AC*/XC, negative response) sequences. To test 
whether a neuron group carried the prediction, we averaged the C/C* response 
(350–450 ms) and used a bootstrap test across neurons (5,000 resamples, 
two-sided test; Extended Data Fig. 10f).

Testing for intrinsic differences in stable and switching neurons. Fano factor. Fano 
factor measures the variability of neural responses. To compare the inherent 
variability of each neuron group (stable and switching), we measured the fano 
factor of single neurons over the sequence. First, we binned the raw spiking data 
(sample rate = 30 kHz; 40-ms bins, stepping by 16.7 ms). In each bin (w), spikes 
were summed and the fano factor (F) was calculated across all trials per neuron:

F wð Þ ¼ σ2w
μw

For each functional group (stable and switching neurons), we combined across 
neurons and days (Extended Data Fig. 10a). Extended Data Fig. 10b shows the 
average fano factor during the pre-stimulus period (−400 to 0 ms, relative to the 
A/X stimulus start), the stimulus presentation periods (A/X, B/Y, C/C* and D) and 
the inter-chord intervals

Intrinsic timescale of neuron types. Following previous methods60, we estimated 
the intrinsic timescale of each neuron using autocorrelation, which reflects the 
time duration over which the neuron integrates information. Extended Data 
Fig. 10c shows the average autocorrelation of stable and switching neurons (on 
the pre-stimulus period: −400 to 0 ms). To quantify the decay time, we fit an 
exponential to the bootstrapped average autocorrelation: y = Ae−

x
τ + C (using 

scipy.optimize.curve_fit).

Analytical model of rotational dynamics. Our data show that A/X information 
rotates from a sensory representation to a memory representation over time 
via dynamics in the population response. As detailed in the manuscript, these 
dynamics can range from random to structured. To understand the relative benefits 
of a structured versus random rotation, we derived analytical expressions for the 
efficiency of the representation. To facilitate closed-form solutions, this model is 
simplified. Therefore, it is missing several characteristics of the real data or the 
neural network model (which is detailed below), such as noise in the responses and 
variability in the level of selectivity across neurons.

Random network. In the random network, we defined the probability of 
a significant response by a neuron to sensory input A and X as psenA  and 
psenX , respectively. The probability of a nonselective sensory neuron is 
psen0 = 1 − psenA − psenX . Likewise, during the memory period, the probabilities 
of memory-selective neurons are pmem

A  and pmem
X  to A and X memory, 

respectively. The probability of nonselective neurons during the memory period is 
pmem
0 = 1 − pmem

A − pmem
X .

Structured network. A ‘pure’ structured rotational network consists of only stable 
and switching neurons. Similar to the random network, these neurons are either 
selective for A or X during the sensory time period, with probability psenA  and psenX .

Stable neurons maintain their selectivity across A and X time periods, such that

pmem
A ¼ 1; if neuron is selective for sensory input A

0; else

�

pmem
X ¼ 1; if neuron is selective for sensory input X

0; else

�

The opposite relationship exists for switching neurons:
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pmem
A ¼ 1; if neuron is selective for sensory input X

0; else

�

pmem
X ¼ 1; if neuron is selective for sensory input A

0; else

�

To define an intermediate model, we portioned the total available neurons (N) 
into two groups: structured and random, with proportion q. Here, qN neurons 
adhere to structured (stable/switching) rules, while (1 − q)N adhere to random 
rules.

First, the model allowed us to write the conjunctive/single ratio as a function of 
rotational structure. Second, using this model, we can highlight the efficiency of a 
structured rotation with two metrics: percent selectivity and rotational cost.

Ratio of conjunctive/single selective neurons. One key feature differentiating 
a structured from a random rotation is the relative proportions of conjunctive 
neurons to singly selective neurons. In the random network, the likelihood of a 
conjunctive neuron is pconj = psenA (pmem

A + pmem
X ) + psenX (pmem

A + pmem
X ), and the 

probability of single neuron is psing = psen0 (pmem
A + pmem

X ) + pmem
0 (psenA + psenX ).

To simplify the algebra, we assumed that the probability of a neuron 
selectively representing sensory or memory is all equal. In other words, 
p = psenA = psenX = pmem

A = pmem
X . With this simplification, the proportion of 

conjunctive to singly selective neurons in the random network is as follows:

pconj
psing

¼ 4p2

4 1� 2pð Þp ¼ p
1� 2p

In contrast, in a structured rotation, all selective neurons are conjunctive, with 
a likelihood

pconj ¼ psenA þ psenX ¼ 2p

We defined the conjunctive/single ratio in an intermediate network by linearly 
mixing between the models. Recall that q defines the proportion of structured 
neurons in the network. Therefore, the proportion of conjunctive to singly selective 
neurons can be written as follows:

pconj
psing =

4p2(1−q)+2pq
4(1−2p)p(1−q) =

2p(1−q)+q
2(1−2p)(1−q) =

p
(1−2p) +

q
2(1−2p)(1−q)

=
1

2(1−2p)
1

(1−q) −

1
2

Given that 1
(1−2p) ≥ 0 ∀ p ∈

[

0, 1
2
]

, and that q ∈ [0, 1], the conjunctive/
single ratio scales with 1

(1−q). In other words, increasing q (that is, increasing the 
proportion of structured neurons) increases the conjunctive/single ratio.

Percent total selectivity. Next, we examined the metrics of efficiency using this 
analytical framework. First, we calculated the percent of selective neurons. A lower 
percentage indicates more efficiency in the representations of the network.

In the random network, the probability that a neuron 
is involved in the sensory and/or memory representation is 
prandsel = 1 − (1 − psenA − psenX )(1 − pmem

A − pmem
X ). Assuming all probabilities of 

selectivity are equal, this reduces to prandsel = 4p − 4p2.
In the structured network, because the sensory selectivity of a 

neuron determines its memory selectivity, the probability of selectivity is 
pstrucsel = 1 − (1 − psenA − psenX ) = 2p.

Importantly, for 0 ≤ p ≤

1
2, p

struc
sel ≤ prandsel , showing the structured rotation is 

always more efficient than the random one.
From these equations, we defined the percent selectivity in intermediate 

models as a linear mixing of the structure and random network, such that the 
number of selective cells in an intermediate model is a linear function of q: 
pmix
sel =

(

4p − 4p2
)

(1 − q) + 2pq = −2p (1 − 2p) q +

(

4p − 4p2
)

. Given 
that p ≤

1
2, the percent selectivity will decrease with q, showing that increasing 

the structure in the network reduces the number of neurons involved in the 
representation.

Efficiency of the rotation. Finally, we estimated the efficiency of the rotation. For 
this, we scored neurons based on how much their selectivity (response) changed 
between time periods. Neurons with no change (for example, nonselective or stable 
neurons) cost 0. Neurons that are selective in one time period but not the other (for 
example, single neurons) cost 1. Neurons that switch their selectivity cost 2.

The random network consisted of conjunctive, single and 
nonselective neurons. The cost of a random rotation is Costrand = 2
(psenA pmem

X + psenX pmem
A ) + psen0 (pmem

A + pmem
X ) + (psenA + psenX )pmem

0 . Assuming a 
single likelihood of selectivity (p), this can be reduced to 4p − 4p2.

A structured rotation involves only stable neurons (which cost 0) and switching 
neurons (which cost 2). Assuming half the conjunctive neurons are switching 
neurons, the cost of the structured rotation is Coststruc = 2 1

2 (psenA + psenX ) = 2p.
Intermediate models linearly combine these costs, weighted 

by q, and so the relative proportion of structure in the network is 

Costmix =

(

4p − 4p2
)

(1 − q) + 2pq = −2p (1 − 2p) q +

(

4p − 4p2
)

. Again, 
this is a linear function with respect to q and, given p ≤

1
2, cost decreases with 

increased structure.
Altogether, this simplified analytical model shows that increasing the  

structure of rotation increases the ratio of conjunctive/single neurons, reduces  
the total number of neurons involved in the representations and increases the 
network efficiency.

Neural network model of rotational dynamics. To compare structured and random 
rotations, we developed a neural network model of rotational dynamics. This 
model extended the analytical model as it included sensory variance, noise and the 
observed associative learning between the A/X and C/C* sensory representations 
(and subsequent interference).

The network consisted of two layers: an input layer (Li) that represented 
external inputs and a representational layer (Lr) that captured the recorded 
neural responses. While there is no learning in the model, we used PyTorch to 
take advantage of its network module structure. The input layer consisted of four 
different inputs capturing sensory inputs (A, X, C and C*). The representational 
layer consisted of 150 neurons, with the selectivity of each neuron determined 
by the feedforward weights (Wir) from the input layer. Weights between neurons 
in the representational layer (Wrr) defined the recurrent dynamics. The FR 
of the representational layer was a rectified linear function of the input (x) 
ReLU(x) = max(0, x). The network ran in two time steps, with added Gaussian 
noise (ε = N(0, a), where a = 2, unless otherwise noted). Therefore, activation 
in the representational layer (Lr) at a given time period (t) can be described by 
Lr (t) = ReLU(Li (t)Wir + Lr (t − 1)Wrr + ε).

Each trial involved the sequential activation of A or X inputs, followed by C 
or C* inputs. As in the task, the four possible sequence trial types were AC, AC*, 
XC and XC*. Each instance of the model consisted of 1,000 trials with equal trial 
counts per condition. There is no learning in the model, and the weights between 
the sensory layer and network were preset to reflect the association between A/X 
and C/C*. Without learning, there was no need for unequal trial counts to generate 
an association; therefore, trial counts per condition were balanced to match our 
neural analysis.

Model recurrent weights. Recurrent weights (Wrr) were designed via two general 
ways. First, control models without rotation had no recurrence (Wrr = 0), decaying 
self-recurrence or stable self-recurrence (that is, Wrr =

1
2 I  and Wrr = I for decaying 

and stable, respectively).
Second, rotation models had recurrent weights that rotated representations 

with varying degrees of structure. Creating rotation models, with or without 
structure, required specifying the selectivity of each neuron. The selectivity of a 
neuron can be understood as a point in two dimensions (ws, wm), where the first 
dimension (ws) defines selectivity during the sensory time period, and the second 
dimension (wm) defines selectivity during the memory time period. We created a 
relationship between the sensory and memory selectivity by drawing their values 
from a 2D Gaussian with a nondiagonal covariance matrix. The diagonal elements 
of the covariance matrix represent the variance of selectivity within each time 
period (set to 0.451). The off-diagonal elements represent the covariance across 
time periods (that is, the relationship between sensory and memory selectivity). 
Increasing the off-diagonal covariance increased the structure of the rotation 
(Supplementary Fig. 4c).

Depending on its specified selectivity, each neuron was assigned a positive 
FR response to A and X (giving it A/X selectivity) per time period. This defined 
the sensory response matrix (SenAX = N × 2), and the memory response matrix 
(MemAX), where the first and second columns of each matrix indicate A and X 
selectivity, respectively. For example, an A-preferring neuron (n) would be assigned 
a (ws,0) sensory response in SenAX[n,:]. If the neuron had stable selectivity for A, 
its memory response in MemAX[n,:] = (wm,0). Meanwhile, an AX-switching neuron 
would be assigned the sensory response (ws,0) in SenAX and the memory response 
(0,wm) in MemAX. The network contained an equal number of stable and switching 
neurons (N = 25 of each, N = 50 overall), although the model results were robust 
against changes in the ratio between stable and switching neurons (for example, 
using a ratio of 2:1 of stable to switching neurons, similar to the experimentally 
observed ratio, gave qualitatively similar results). In addition, there was an 
equal probability of neurons preferring A or X. Given the sensory and memory 
selectivity matrices, the recurrent weight matrix could be determined as Wrr 
= MemAX × inv(SenAX).

To vary the degree of structured rotation in the model, we varied the 
covariance of sensory and memory selectivity. When covariance = 0, the rotation 
occurs by random changes in selectivity. By increasing the covariance (from 0 
to 0.45 in 50 steps), we increased the number of conjunctively selective neurons, 
which increased the structure of the rotation. All graphs show the normalized 
covariance as the level of structure in the rotation (for example, Fig. 7b, x axis: 
random→structured). The normalized covariance (valued between 0 and 1) is 
the selectivity covariance (off-diagonal) divided by the variance in selectivity 
(diagonal). Increasing the covariance led to an increase in the conjunctive/single 
ratio in the network (Fig. 7b). Note that unlike when analyzing the neural data, we 
did not z-score our calculation of the conjunctive/single ratio because selectivity 
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was fixed across model runs. Given the predictions from our analytical model, 
we quantified how the increased structure (x) leads to an increased conjunctive 
proportion (y) by fitting the following function: y =

A
B−x + C (fit with the scipy.

optimize.curve_fit).
We did not directly fit the observed neural conjunctive/single ratio to our 

model because it is not possible to disambiguate measurement noise in neural 
activity and differing levels of structure in the rotational dynamics (random versus 
structured).

Model input weights: controlling the degree of association between A/X and 
C/C*. Associations between A/X and C/C* stimuli were built into the model 
through construction of the input weights (Wir). All weights between the input 
and representational layer (Wir) were drawn from the absolute value of a Gaussian 
distribution (that is, zero input weights lead to nonselective neurons). We 
parametrically controlled the level of association between A–C and X–C* in the 
population by adjusting the number of neurons with combined A–C and X–C* 
selectivity. The association level was varied between 0 and 0.95. Importantly, the 
structure of the model allowed us to manipulate the level of association without 
affecting the metrics of efficiency or the rotational dynamics.

Analysis: alignment of axes and prediction/postdiction. Neural network  
activity was analyzed in the same way as the experimental neural data using 
activity from the representational layer (Lr) of the network. As above, we  
trained linear classifiers (using the same parameters) during both sensory  
and memory time periods to determine A/X sensory, C/C* sensory and A/X 
memory axes. Likewise, we calculated the classifier accuracy (using AUC), and 
the angle between them, to ensure that our model recapitulated the observed 
angular relationships.

Also following neural analyses, we validated the relationship between 
alignment (AC/XC* prediction) and interference (postdiction). We measured the 
prediction of the network by calculating the accuracy of the C/C* sensory classifier 
in discriminating the A/X sensory input, which reflects the extent to which the 
A/X stimulus encodes the expected stimulus C/C* (Supplementary Fig. 2b). To 
determine the amount of postdiction or interference, we calculated how accurately 
the A/X sensory classifier discriminated A/X on unexpected trials (A–C*, X–C) 
during the A/X memory period (Supplementary Fig. 2c). The same model 
structure was used to study rotational dynamics, where the level of rotation was 
fixed to 0.31 for these simulations (although the level of rotation did not affect the 
prediction/postdiction results).

Recurrent neural network weight manipulation: validation of rotation. To test 
whether rotation avoids interference, we created three networks to serve as 
controls that had recurrent weight matrices without rotational dynamics. In 
the first control, nonrotating network, we set all weights to zero (Wrr = 0); this 
also removes any sustained activity. The second and third control networks 
had diminishing and sustaining self-excitatory activity by setting the recurrent 
weights to Wrr =

1
2 I  and I, respectively. To test whether these networks could 

avoid interference, the association between A/X and C/C* sensory inputs was 
set to 0.95. After simulating the networks, we assessed rotation by calculating 
the change in A/X selectivity (z-scored FR difference) across sensory and 
memory time periods (Supplementary Fig. 7a). Networks with nonrotating 
weight matrices (Wrr = 0, 12 I  and I) did not rotate their A/X representations, 
thereby showing that nonlinear mixing of A/X sensory and C/C* responses is not 
sufficient to induce a rotation.

Next, we compared the A/X memory accuracy in these nonrotating networks 
to the memory accuracy from networks with rotation (random and structured). In 
addition, we calculated A/X memory accuracy over all trials and on unexpected 
trials (where interference is expected). Supplementary Fig 7b shows that the 
nonrotating networks (Wrr = 0, 12 I  and I) exhibited interference.

Metric of efficiency: total selectivity. We measured the efficiency of rotational 
dynamics by quantifying how compactly the network stores information about the 
A/X stimulus. To measure this, we calculated the percentage of neurons involved 
in representing A/X at any time during the sequence (that is, the total selectivity). 
We tested the observed percent of selective neurons against expectations from a 
random mechanism using the permutation test described in “Nonparametric test 
against the random mechanism” (Fig. 7d).

Using our network model, we varied the rotational structure to test its impact 
on efficiency. For networks with varying rotation structure, we calculated the 
percent total selectivity (that is, number of A/X-selective neurons/N). Based on 
predictions of the analytical model, we used linear regression to relate the level of 
structure in the rotation to the total selectivity (Fig. 7c).

Metric of efficiency: city block distance. We measured the efficiency of the network 
by quantifying the number of neurons that changed their preference between 
the sensory and memory representations. To estimate the energy of a change in 
representation, we used the city block distance (that is, Manhattan distance or L1 
norm) as follows:

City block u; vð Þ ¼
Xn

i¼1

ui � vij j

To measure the efficiency in rotation of the neural data, we measured the city 
block distance between the A/X sensory and A/X memory axes. Classifier weights 
were normalized within each animal by dividing the weight vector by its norm, 
before combining weights across animals. To control for changes in the number 
of recorded neurons across days, we divided the city block distance by the total 
number of neurons. A null distribution, representing the random mechanism, was 
created by permuting selectivity across neurons within the sensory and memory 
time periods. The null distribution was then used to calculate the z-scored city 
block distance per block across the 4 days of recording (Fig. 7f).

Using our network model, we tested whether parametrically increasing the 
structure in the rotation decreased the city block distance between the axes by 
using linear regression to relate the level of structure in the rotation to the city 
block distance between axes (Fig. 7e).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support each main figure are included as source data. Original data 
are available upon reasonable request. Source data are provided with this paper.

code availability
The code supporting the implementation and analysis of the neural network model 
is available on our lab GitHub repository (www.github.com/buschman-lab). As the 
model was analyzed in the same way as the neural data, the same analysis code can 
be applied to neural data.
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Extended Data Fig. 1 | encoding along the B/Y sensory Axis. a, The neural population encoding of B/Y shown on (a) Day 1 and (b) Day 4. For each 
of the four conditions, the plot shows the mean ± s.e.m. of the population projection onto the B/Y sensory axis. Yellow outlines B/Y training period 
(185–285 ms). For panels a-e, n = 1064 withheld trials, z-scored and then combined across animals per day. Positive and negative projections indicate 
Y (green) and B (purple) encoding, respectively. Light and dark grey horizontal bars mark significant differences for AB vs XY and C vs. C*, respectively 
(two-sided t-tests, p ≤ 0.001, Bonferroni corrected). c, Data show mean ± s.e.m. of B/Y stimulus encoding strength on the B/Y sensory axis. Negatively 
labeled conditions (that is, B) were inverted, such that positive values on y-axis indicate B and Y trials are ‘correctly’ encoded as B and Y, respectively. 
Day 1 = 0.34 ± 0.021, Day 2 = 0.33 ± 0.22, Day 3 = 0.33 ± 0.022, Day 4 = 0.31 ± 0.021, all days p < 1/5000 two-sided bootstrap tests. Slope across days 
mean ± s.e.m. = −0.01 ± 0.01, p = 0.16, one-sided bootstrap test. d, Points show mean ± s.e.m. of A/X stimulus encoding strength on the B/Y sensory axis, 
during A/X stimulus presentation. For panels d-f, lines and shaded regions show mean and 95% CI of bootstrapped linear regressions. Positive values 
indicate correct A/X encoding: Day 1 = 0.13 ± 0.021, p < 1/5000, Day 2 = 0.062 ± 0.023, p = 0.0064, Day 3 = 0.096 ± 0.022, Day 4 = 0.031 ± 0.023, 
p = 0.17, all two-sided bootstrap tests. Slope across days mean ± s.e.m. = −0.028 ± 0.01, p = 0.0016, one-sided bootstrap test. e, Points show mean ± s.e.m. 
of C/C* stimulus encoding strength on the B/Y sensory axis. Positive values indicate correct encoding of C/C* association on the B/Y sensory axis (that 
is, C and C* should go in B and Y direction, respectively). Day 1 = −0.10 ± 0.023, p < 1/5000, Day 2 = −0.056 ± 0.024, p = 0.016, Day 3 = −0.006 ± 0.023, 
p = 0.81, Day 4 = −0.044 ± 0.023, p = 0.055, all two-sided bootstrap tests. Slope across days mean ± s.e.m. = 0.022 ± 0.01, p = 0.017, one-sided bootstrap 
test. Note, this trend does not appear in analysis of blocks of trials within a day (Supplementary Fig. 2f). f-g, Points show mean ± s.e.m. of angles between 
B/Y sensory axis and (f) A/X and (g) C/C* sensory axes (n = 5000 resamples of neurons). Significant differences from 90 degrees shown by grey boxes 
(p≤0.01, one-sided bootstrap tests). Significant change in angle to A/X sensory axis over time is shown by grey line (shaded region is 95% confidence 
interval of bootstrapped linear regression). The B/Y and A/X sensory axes were initially aligned, but became orthogonal over days: change over days, 
slope = 0.84 ± 0.24, p < 1/5000, one-sided bootstrap test. B/Y and C/C* sensory axes were always orthogonal. Change over days: slope = 0.29 ± 0.2, 
p = 0.077, one-sided bootstrap test. For all panels, p-values: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001.
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Extended Data Fig. 2 | classifier Performance over sequence Timecourse. For each classifier, the accuracy (y-axis) was measured as the area under 
the curve (AUC; see methods). Accuracy was calculated using data from trials withheld from training (n = 152 trials per animal) and was calculated in a 
sliding window fashion (25 ms windows, stepped 10 ms). Lines show mean ± s.e.m. of accuracy timecourses (n = 7 animals). Day 1 and 4 shown in left and 
right panels, respectively. a, A/X sensory classifier performance over time, shown for decoding A/X (orange) and C/C* (blue) stimuli. Orange rectangle 
indicates A/X training period (10–110 ms). b, C/C* sensory classifier performance over time. Line colors follow panel a. Blue rectangle indicates C/C* 
training period (360–460 ms). Consistent with predictive coding shown by projections in Fig. 1g-h, on Day 4 the C/C* sensory classifier decoded A/X 
during the A/X stimulus and immediately before C/C*. c, A/X sensory classifier performance shown for expected trials (black line - ABCD vs. XYC*D) and 
unexpected trials (grey line - ABC*D vs. XYCD). Consistent with postdiction results shown in Fig. 3b, the A/X sensory classifier performs well on expected 
trials, but incorrectly classifies A/X during unexpected C/C* trials. d, A/X memory classifier performance over time, shown for A/X discrimination 
(dark blue) and C/C* (light blue). Dark blue rectangle indicates training period (360–460 ms). Consistent with projection results shown in Fig. 3c-d and 
Extended Data Figs. 5 and 6, A/X memory classifier can decode A/X near the end, but not beginning of the trial. A/X discrimination of C/C* is close to 
chance (AUC = 0.5), reflecting the fact that the two axes are independent. e, A/X memory classifier performance, divided by expectation. Colors follow 
panel c. The A/X memory classifier performs well at discriminating A/X on both expected and unexpected trials.
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Extended Data Fig. 3 | Associative Learning Generalizes to c/c* chords Presented outside of sequence. a-b, Lines show mean ± s.e.m. of neural 
activity (trials balanced across conditions) projected onto a C/C* chord encoding axis on (a) Day 1 (n = 4204) and (b) Day 4 (n = 4196). The C/C* 
chord encoding axis was trained using the firing rate response to the C/C* chord presented in isolation, outside of sequences (n = 300 trials). Line 
colors indicate trial types (ABCD – orange, ABC*D – pink, XYCD – green, XYC*D – blue) and line style indicates 3rd chord type (C – solid, C* – dashed). 
Positive and negative projections indicate C* and C encoding, respectively. Light and dark grey horizontal bars mark significant differences for AB vs. XY 
and C vs. C*, respectively (two-sided t-test, p ≤ 0.001, Bonferroni corrected). Results are consistent with projections onto the C/C* sensory axis (Fig. 
1g,h). c, Points show mean ± s.e.m. of C/C* prediction strength during the A/X stimulus, which grew over days. Positive prediction (y-axis) indicates 
the C/C* chord sensory axis correctly encoded the association (that is, C during A and C* during X) during the A/X stimulus (black outline in panels 
a-b, 10–110 ms). Day 1 = 0.017 ± 0.023, p = 0.44, Day 2 = 0.025 ± 0.023, p = 0.27, Day 3 = 0.071 ± 0.023, p = 0.0008, Day 4 = 0.14 ± 0.022, p < 1/5000, 
two-sided bootstrap tests. Trials used in other projection analyses were also used here (n = 1064). For panels c-d, lines and shaded region show mean 
and 95% CI of bootstrapped linear regressions. Consistent with Fig. 1i, the prediction along the C/C* sensory chord axis increased across days; slope 
mean ± s.e.m. = 0.04 ± 0.01, p < 1/5000, one-sided bootstrap test. d, Violin plots show bootstrapped distributions of the angle between A/X sensory 
and C/C* chord sensory axes (n = 5000 resamples of neurons). The mean ± s.e.m. angle between axes by day (degrees): Day 1 = 95 ± 6.5, p = 0.19; Day 
2 = 84 ± 5.9, p = 0.16, Day 3 = 78 ± 5.0, p = 0.011, Day 4 = 83 ± 4.4, p = 0.064, one-sided bootstrap tests against 90 degrees. Regression across days: 
slope = −4.3 ± 2.5, p = 0.039, one-sided bootstrap test. e, Angle between A/X memory and C/C* chord sensory axes. Angle (degrees) on Day 1 = 88 ± 7.0, 
p = 0.36; Day 2 = 103 ± 6.3, p = 0.019, Day 3 = 95 ± 4.5, p = 0.14, Day 4 = 83 ± 5.2, p = 0.10, one-sided bootstrap tests against 90 degrees. Regression 
across days: slope = −2.2 ± 2.8, p = 0.21, one-sided bootstrap test. For all panels, p-values: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001.
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Extended Data Fig. 4 | Alignment of Neural Activity in A/X-c/c* state space. a, Neural activity projected into A/X-C/C* state space for Day 1 (left) and 
Day 4 (right). Lines show mean projections of neural activity onto the A/X sensory axis (x-axis) and C/C* sensory axis (y-axis; n = 1064 trials). Activity 
is shown during the A/X stimulus presentation (−10–170 ms) for each of four trial types, indicated by legend. Marker saturation increases with time, 
as shown in sequence timecourse legend above graph. Inset shows principal components (PCs) of neural trajectories in grey; black arrow size matches 
percentage of explained variance per PC (see methods). On day 1, the neural trajectory moved predominately along the A/X encoding axis (x-axis). By day 
4, the neural trajectories followed an angle, encoding both A/X and the expected C/C* information (y-axis). b, The angle of PC1 (relative to horizontal) 
during the A/X period increased across days. Radial lines show the circular mean ± s.e.m. of angle shown for Day 1 (light grey) and Day 4 (dark grey). 
Angle of PC1 per day (degrees): Day 1 = 18 ± 2.9, Day 2 = 14 ± 3.6, Day 3 = 11 ± 4.7, Day 4 = 31 ± 2.3 degrees (bootstrap, n = 5000 resamples of neurons). 
Change in angle across days, slope = 3.7 ± 2.4, p = 0.0028, one-sided bootstrap test. c, Neural activity during the C/C* stimulus period (340 to 520 ms) 
projected into A/X-C/C* state space, as in panel a. d, The angle of PC1 (relative to vertical) during the C/C* period decreased across days. Format follows 
panel b. Angle of PC1 per day (degrees): Day 1 = 79 ± 3.5, Day 2 = 74 ± 3.8, Day 3 = 77 ± 4.3, Day 4 = 58 ± 2.7 (bootstrap); change in angle across days, 
slope = −6.0 ± 1.4, p < 1/5000, one-sided bootstrap test. For all panels, p-values: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001.
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Extended Data Fig. 5 | A/X Memory Representation and Full Neural Dimensionality. a,b, The neural population encoding of A/X memory shown 
on (a) Day 1 and (b) Day 4. For each of the four conditions, the lines show the mean ± s.e.m. of the population projection onto the A/X memory axis 
(blue outlines A/X memory training period; for all panels, n = 1064 withheld trials, combined across animals per day). Positive and negative projections 
indicate XY and AB encoding, respectively. Light and dark grey bars mark significant differences for AB vs. XY and C vs. C* respectively (two-sided t-test, 
p≤0.001, Bonferroni corrected). c-d, Neural activity projected into A/X memory - C/C* state space for (c) Day 1 and (d) Day 4, around the C/C* stimulus 
presentation (340–520 ms). The x-axis and y-axis are the projections of neural activity onto the A/X memory axis and the C/C* sensory axis, respectively. 
Marker saturation increases with time (shown across top). Inset shows PCs of neural trajectories in grey; black arrow size matches percentage of 
explained variance per PC (for distributions see Fig. 3h). e, Violin plots show distribution of the dimensionality of the full neural response during the C/C* 
stimulus presentation. For each day, PCA was performed on the firing rate responses across a pseudo population (neurons were concatenated across 
animals; see methods). Similar to Fig. 3h, the dimensionality was estimated using the explained variance ratio (EVR) of the first two PCs (see methods). 
Dimensionality of the neural responses tended to decrease over days, as shown by the increased in the EVR of first two PCs: Day 1 = 0.63 ± 0.062, Day 
2 = 0.54 ± 0.056, Day 3 = 0.68 ± 0.064, Day 4 = 0.76 ± 0.091 (bootstrap, n = 5000 resamples of neurons). Change in EVR of first two PCs over days: slope 
mean ± s.e.m. = 0.053 ± 0.034, p = 0.065, one-sided bootstrap test.
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Extended Data Fig. 6 | A/X sensory to Memory Transformation. a, Cross-temporal performance of A/X classifiers. A series of A/X classifiers were 
trained across the sequence (x-axis; 25 ms windows, stepping by 10 ms) and then each classifier was tested across the sequence (y-axis). Color indicates 
the average correct projection on withheld data for all combinations of training times and test times. White bars indicated onset and offset of A/X, 
B/Y, C/C* stimuli. Note, the low cross-temporal decoding performance between the A/X and C/C* time periods reflects the temporal dynamics of the 
representation of A/X during the sequence. b, Points show mean ± s.e.m. of correct projection along the A/X sensory axis (orange) and A/X memory 
axis (blue), during the first three stimuli in the sequence (A/X, B/Y, and C/C* columns). Positive values indicate correct encoding strength; negatively 
encoded conditions (that is, A) were inverted before averaging. Horizontal bars indicate significant differences between A/X encoding during the A/X 
stimulus and C/C* stimulus. The A/X sensory axis had stronger A/X encoding during A/X sensory compared to the C/C* stimulus (differences per 
day: Day 1 = 0.31, Day 2 = 0.26, Day 3 = 0.27, Day 4 = 0.32, all p≤1/5000, one-sided permutation tests). The A/X memory axis had stronger encoded 
A/X encoding during the C/C* stimulus compared to the A/X stimulus (differences per day: Day 1 = −0.19, Day 2 = −0.22, Day 3 = −0.11, Day 4 = −0.17, 
all p = 0.0002, one-sided permutation tests). (A/X stimulus) Projections of neural activity during the A/X stimulus (10–110 ms) onto A/X sensory 
axis (mean ± s.e.m.): Day 1 = 0.37 ± 0.2, Day 2 = 0.27 ± 0.022, Day 3 = 0.28 ± 0.022, Day 4 = 0.33 ± 0.021, all p < 1/5000. Onto A/X memory axis: Day 
1 = 0.053 ± 0.023, p = 0.022, Day 2 = 0.06 ± 0.024, p = 0.013, Day 3 = 0.12 ± 0.023, p < 1/5000, Day 4 = 0.053 ± 0.023, p = 0.019 (all two-sided bootstrap 
tests). During the A/X stimulus, A/X sensory encoding was stronger than A/X memory encoding on all days (Sen. – Mem. differences: Day 1 = 0.31, Day 
2 = 0.21, Day 3 = 0.16, Day 4 = 0.27, all p≤1/5000, one-sided permutation tests). (B/Y stimulus) Projections of neural activity during the B/Y stimulus 
(180–280 ms) onto the A/X sensory axis: Day 1 = 0.12 ± 0.022, p < 1/5000, Day 2 = 0.0038 ± 0.024, p = 0.87, Day 3 = 0.12 ± 0.023, p < 1/5000, Day 
4 = 0.046 ± 0.024, p = 0.046. Onto A/X memory axis: Day 1 = 0.07 ± 0.023, p = 0.0044, Day 2 = 0.22 ± 0.23, p < 1/5000, Day 3 = 0.19 ± 0.23, p < 1/5000, 
Day 4 = 0.11 ± 0.024, p < 1/5000 (all two-sided bootstrap tests). During B/Y stimulus, A/X sensory encoding was slightly stronger than A/X memory on 
Day 1 (Sen. – Mem. diff. = 0.05, p = 0.064), but after experience, A/X memory encoding of A/X information was significantly stronger than A/X sensory 
encoding (Day 2 = −0.21, p = 0.0002, Day 3 = −0.07, p = 0.017, Day 4 diff. = −0.07, p = 0.02, all one-sided permutation tests). (c/c* stimulus) Projections 
of neural activity during the C/C* stimulus (360–460 ms) onto A/X sensory axis: Day 1 = 0.053 ± 0.023, p = 0.021, Day 2 = 0.0034 ± 0.023, p = 0.87, Day 
3 = 0.008 ± 0.023, p = 0.72, Day 4 = 0.0069 ± 0.023, p = 0.77. Onto A/X memory axis: Day 1 = 0.24 ± 0.023, Day 2 = 0.28 ± 0.023, Day 1 = 0.24 ± 0.024, 
Day 4 = 0.23 ± 0.024, all p < 1/5000 (all two-sided bootstrap tests). During the C/C* stimulus, the A/X memory encoding was stronger than A/X 
sensory encoding on all days (Sen – Mem. differences: Day 1 = −0.19, Day 2 = −0.28, Day 3 = −0.23, Day 4 = −0.22, p = 0.0002, all one-sided permutation 
tests). c, Violin plots show distribution of when A/X memory encoding strength crossed A/X sensory encoding strength. Horizontal line indicates 
mean. Mean ± s.e.m. of switch times (ms) relative to sequence onset: Day 1 = 248 ± 13, Day 2 = 182 ± 10, Day 3 = 178 ± 22, Day 4 = 194 ± 22 (n = 5000, 
bootstrap over trials). The switch time decreased over days (slope mean ± s.e.m. = −16 ± 8.2, p = 0.02, one-sided bootstrap test). The change in switch 
time decreased the most between days 1 and 3 and then stabilized by day 4 (Day 4-3 diff. = 16.11 ± 31, p = 0.31, one-sided bootstrap test). For all panels, 
p-values: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001.
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Extended Data Fig. 7 | A/X sensory and A/X Memory encoding have opposite effects on c/c* encoding. Trial-by-trial correlation of encoding strength 
along three relevant axes: A/X sensory, C/C* sensory, and A/X memory. Positive and negative values on each encoding axis indicate correct and incorrect 
projections, respectively. All lines show mean and 95% confidence interval of bootstrapped linear regressions; slope, correlation (r) and p-values (all 
one-sided bootstrap tests, uncorrected for multiple comparisons across panels) are listed in plots. a-b, Correlation between A/X sensory encoding 
strength (x-axis; 10–110 ms) and A/X memory encoding strength (y-axis; 360–460 ms) on (a) Day 1 and (b) Day 4. Consistent with a transformation of 
A/X information from sensory to memory, there is a significant correlation on Day 1 and 4. c-f, Relationship between A/X encoding strength (x-axis) and 
C/C* sensory encoding strength (y-axis). A/X encoding strength by the sensory and memory axes was estimated during the 50 ms prior to C/C* onset 
(300–350 ms). C/C* sensory encoding strength was estimated during C/C* (360–460 ms). Panels show correlations between C/C* representation and 
A/X sensory representation (c and d) or A/X memory representation (e and f). Correlations are shown for both expected stimuli (c and e; ABCD, XYC*D) 
and unexpected stimuli (d and f; ABC*D, XYCD). c, On day 4, A/X sensory encoding was positively correlated with C/C* encoding accuracy on expected 
trials (ABCD, XYC*D). d, On day 4, A/X sensory encoding was negatively correlated with C/C* encoding accuracy on unexpected trials (ABC*D, XYCD). 
e, On day 4 there was no significant correlation between A/X memory encoding accuracy and C/C* encoding on expected trials. f, On day 4, A/X memory 
encoding accuracy was positively correlated with C/C* encoding during unexpected trials.
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Extended Data Fig. 8 | Dynamics of A/X selectivity Are consistent across c/c* stimuli. Phenograph clustering (Fig. 5a) was applied to z-scored firing 
rate differences calculated for specific C/C*/Cmix stimuli. a, Z-scored differences were calculated for XYCD-ABCD (left), XYC*D-ABC*D (middle), and 
XYCmixD-ABCmixD (right) pairs of conditions. Lines show mean ± s.e.m. of A/X selectivity over time per original Phenograph cluster (n = 522). Note, 
Cmix trials involved presenting a novel stimulus that was a mix between the two chords making up C and C*; ABCmixD and XYCmixD sequences occurred 
on 12% of trials, randomly distributed throughout the day (see methods). b, Data points show the individual neurons’ original AB-XY z-scored differences 
(x-axis) were highly correlated with z-scored differences calculated on the ‘C’ trials (XYCD-ABCD), during sensory (dark blue, left; r = 0.91 ± 0.01) 
and memory (dark blue, right; r = 0.89 ± 0.02) time periods. Similarly, the correlation was high to ‘C*’ trials (XYCD-ABC*D) during sensory (blue, left; 
r = 0.92 ± 0.01) and memory (blue, right; r = 0.87 ± 0.02) time periods. Finally, this correlation was also seen on Cmix trials (XYCmixD-ABCmixD) during 
both sensory (green, left; r = 0.8 ± 0.02) and memory (green, right; r = 0.73 ± 0.02) time periods. All correlations were significant (p < 1/5000, one-sided 
bootstrapped linear regressions, n = 5000 resamples across neurons).
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Extended Data Fig. 9 | stable and switching Dynamics capture the Temporal Dynamics of single Neurons. a, Sensitivity index (d-prime) calculated 
between all pairs of the four Phenograph clusters (see methods). Red line shows observed d-prime; histograms show d-prime after permutation (1000 
shuffles). All clusters were more separated than expected by chance (all p≤0.001, one-sided permutation tests). b, Plot shows how systematically varying 
the number of neighbors in the Phenograph algorithm (K; color-axis) changed the goodness of clustering, as measured by the silhouette score (x-axis) 
and modularity (y-axis, see methods). White text shows the resulting number of identified clusters. A K value between 35 and 45 results in 4 clusters and 
high silhouette scores and modularity. Increasing the K value beyond this recommended range leads to unstable clustering with highly variable silhouette 
scores and low modularity. c, Density of UMAP projection of A/X temporal selectivity. Dot colors indicate Phenograph clustering (left) and K-means 
clustering (right, number of clusters = 4) labels. Area of circle indicates number of data points in region (max size = 8). d, K-means silhouette score as 
a function of cluster number. K-means was performed on UMAP projections for timecourse of A/X selectivity, random selectivity, and C/C* selectivity. 
e-g, A/X temporal selectivity profile clustered by K-means applied to UMAP, as shown in panel c. Lines show mean ± s.e.m. of each cluster’s selectivity 
timecourse, after each K-means run, when the number of clusters set to (e) k = 2, (f) k = 3, and (g) k = 4.
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Extended Data Fig. 10 | Properties of stable and switching Neurons. a, Intrinsic variability was higher in stable neurons. Lines show mean ± s.e.m. of fano 
factor of stable (orange, n = 355) and switching (blue, n = 167) neurons over the sequence (neurons combined days). b, Violin plots show distribution of 
fano factor during pre-stimulus period (−400–0 ms), stimulus presentation (A/X, B/Y, C/C* and D/D* combined, 100 ms each) and inter-chord interval 
(ICI; 75 ms each). Fano factor was higher in stable neurons compared to switching neurons before the stimulus (stable, mean ± s.e.m. = 1.06 ± 0.01, 
switching = 1.04 ± 0.01; diff. = −0.02, p = 0.02), during stimulus presentation (stable = 1.03 ± 0.01, switching = 1.01 ± 0.01; diff. = −0.02, p = 0.016), and 
during the ICI (stable = 1.03 ± 0.01, switching = 1.01 ± 0.01; diff. = −0.02, p = 0.01, all one-sided permutation tests). Difference between the pre-stimulus 
and stimulus periods were significant for both neuron types (stable = 0.03, p = 0.001; switching = 0.03, p = 0.03; one-sided permutation tests). c, Line 
show mean ± s.e.m. of intrinsic autocorrelation of functional neuron types, calculated during the pre-stimulus period. The autocorrelation at lag zero was 
removed for clarity. d, Histograms show distribution of time constants from autocorrelations. The time constant (tau; x-axis) provides a measure of each 
neuron types’s intrinsic timescale; it was estimated by fitting an exponential function to the autocorrelation shown in panel c. No difference was observed 
between neuron types: switching mean ± s.e.m. = 94 ± 51 ms, stable = 86 ± 31 ms (bootstrapped exponential fit; n = 1000 resamples with replacement). 
e, Switching neurons carried slightly more of the A/X-C/C* association than stable neurons. Lines show mean ± s.e.m. of stable (orange) and switching 
(blue) neurons’ A/X and C/C* temporal selectivity profiles. Neurons without significant C/C* selectivity were removed (stable n = 123; switching, n = 24, 
data combined across days). Selectivity of neurons is plotted with respect to their initial A/X preference (that is, initial selectivity is always positive). 
Dashed lines show C/C* selectivity of the same neurons. Responses to associated stimuli (AC/XC*) are positive, while responses to unassociated stimuli 
(AC*/XC) are negative. f, Violin plots show distribution of average predictive selectivity during C/C* stimulus presentation (350–450 ms). Each dot is a 
neuron; all days included. The mean ± s.e.m. of prediction in stable neurons = −0.13 ± 0.31, p = 0.67; switching neurons = 1.16 ± 0.53, p = 0.022, two-sided 
bootstrap tests. g, Data points show estimated locations of neurons in each functional cluster along recording array. Switching (blue), stable (orange), and 
none (grey) neurons are plotted according to their estimated electrode location (x-axis – AP, y-axis – depth (DV) based on implant coordinates; 6 probes 
had 4 shanks separated by 200 µm). Small, random jitter in anterior-posterior (AP) direction was added for clarity of presentation and does not reflect 
actual differences. For all panels, p-values: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes. Our sample sizes were chosen to follow those reported in previous 

publications examining sequence learning in mice (Gavornick and Bear 2014; Fiser et al. 2016). 

Data exclusions Recordings were taken from 10 animals, only 7 had a sufficient number of spikes to be included in further analyses. Otherwise, no data was 

excluded from subsequent analyses. All neurons isolated during spike sorting were included in analysis. 

Replication Recordings and analyses were replicated across 7 animals. Across all animals, we recorded 522 neurons. Separate classifiers were trained per 

animal. Classifier performance was significantly above chance for each animal (Supplementary Fig. 1). We used cross-validation (test-train 

splits) in all of our classifier and projection analyses. When analyzing results about the neurons (e.g., angles between classifiers) we used 

bootstrap tests (sampling with replacement) to prevent outliers from influencing our results. When comparing the rotational mechanisms, we 

used multiple statistical tests (permutation against random, a chi-squared test, binomial tests and tests against randomly generated data), 

which all supported our finding that the observed neural rotation was more structured rotation than random. Finally, we replicated our 

observed results in a neural network model (Fig. 7, Supplementary Fig. 4).    

Randomization All animals experienced the same unsupervised sequence paradigm and were not assigned to groups. Furthermore, all animals experienced all 

'condition' trial types. All trial types occurred randomly during the 1500 trials on a given day, according to their probabilities and ensuring 

equal numbers of trial types.

Blinding All  animals experienced the same paradigm and therefore were not assigned to ‘groups’ and did not require blinding of experimenters.  

Experimenter was blind to trials during preprocessing of the data (e.g., filtering, spike sorting, etc).   

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
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Methods
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Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 7 adult male PV cre+/- C57BL6 mice used were between 13 and 19 weeks old at the start of recording.
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Wild animals No wild animals were used in the study.

Field-collected samples No field collected samples were used in the study.

Ethics oversight All animal procedures were approved by the Princeton IACUC and carried out in accordance with the standards of the National 

Institute of Health.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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