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SUMMARY

Animals require the ability to ignore sensory stimuli
that have no consequence yet respond to the same
stimuli when they become useful. However, the brain
circuits that govern this flexibility in sensory process-
ing are not well understood. Here we show in mouse
primary auditory cortex (A1) that daily passive sound
exposure causes a long-lasting reduction in repre-
sentations of the experienced sound by layer 2/3 py-
ramidal cells. This habituation arises locally in A1 and
involves an enhancement in inhibition and selective
upregulation in the activity of somatostatin-express-
ing inhibitory neurons (SOM cells). Furthermore,
when mice engage in sound-guided behavior, pyra-
midal cell excitatory responses to habituated sounds
are enhanced, whereas SOM cell responses are
diminished. Together, our results demonstrate the
bidirectional modulation of A1 sensory representa-
tions and suggest that SOM cells gate cortical infor-
mation flow based on the behavioral relevance of the
stimulus.

INTRODUCTION

An important aspect of brain function is the flexibility to generate

behavioral output based on the relevance of sensory input. Neu-

ral representations of sensory input are also likely to be flexibly

regulated based on behavioral demand. Indeed, in primary areas

of sensory cortex, stimulus representations can change in

response to a variety of behaviorally relevant factors such as

locomotion, arousal, and attention (Desimone and Duncan,

1995; Fritz et al., 2003; McGinley et al., 2015; Niell and Stryker,

2010; Schneider et al., 2014; Zhou et al., 2014). The flexibility

of neural representations in primary sensory cortex may play

an important role in regulating the salience of information pro-

cessed by higher brain areas and the subsequent generation

of appropriate behavioral output.

Behavioral relevance is not a fixed attribute of sensory stimuli;

rather it is constantly updated based on the previous experi-

ences of the individual animal. Indeed, sensory experience is a

potential trigger for changes in cortical sensory representations.

For example, studies in primary auditory cortex (A1) have

established early developmental critical periods during which
long-term changes in cortical circuitry are elicited by changes

in experience such as sensory deprivation or patterned acoustic

stimulation (Barkat et al., 2011; de Villers-Sidani et al., 2007;

Zhang et al., 2001). In adults, however, long-term changes in

auditory cortex circuits are believed to require associative condi-

tioning. For instance, pairing tones of a particular frequency with

foot shocks or stimulation of subcortical neuromodulatory sys-

tems shifts the frequency tuning of individual neurons in A1

toward the frequency of the conditioned tone (Bakin and Wein-

berger, 1996; Bakin et al., 1996; Froemke et al., 2013). Similarly,

reward association is also reported to induce changes in audi-

tory sensory representations (Blake et al., 2002; Rutkowski and

Weinberger, 2005). In the absence of associative conditioning,

passive sensory stimulation alone can induce short-term (milli-

seconds to seconds) ‘‘stimulus-specific adaptation’’ in auditory

cortex (Ulanovsky et al., 2003) and subcortical structures (Ander-

son et al., 2009; Malmierca et al., 2009). However, difficulty in

monitoring the dynamics of sensory representations in the

same animal over long timescales has hampered investigation

of the long-term effects of passive sensory experience on

cortical auditory coding.

Here we take advantage of chronic two-photon calcium imag-

ing to investigate how experience and changes in the behavioral

relevance of acoustic stimuli alter sensory representations in

adult auditory cortex. We show that brief daily experience with

simple tones causes a progressive reduction (‘‘habituation’’) in

the representation of the experienced tone by layer 2/3 (L2/3)

pyramidal cells. Tone-evoked responses of local somatostatin-

expressing inhibitory neurons (SOM cells), but not parvalbu-

min-expressing neurons (PV cells), are enhanced by daily

experience, suggesting that long-lasting habituation involves a

selective increase in SOM cell-mediated inhibition. Furthermore,

we demonstrate that sensory representations of habituated

tones are rapidly enhanced when mice engage in sound-guided

behavior and that this change is associated with the decrease of

SOM cell activity. Thus, sensory representations in A1 can be

bidirectionally modulated based on whether or not behavioral

relevance is attached to the sensory stimulus.
RESULTS

Chronic Imaging of A1 Sound Representations in
Awake Mice
We combined macroscopic imaging of intrinsic signals and two-

photon cellular-resolution Ca2+ imaging to study sensory repre-

sentations in A1 of head-fixedmice (Figure 1A; Boyd et al., 2015).
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Figure 1. Imaging Sensory Representations in A1 Layer 2/3 Pyramidal Cells

(A) Top: a viral vector expressing GCaMP6s is injected into auditory cortex of mice heterozygous for Gad2-IRES-Cre and ROSA-LSL-tdTomato. Bottom: initial

mapping of auditory cortical areas by intrinsic signal imaging is followed by cellular-level two-photon calcium imaging of A1 in awake mice.

(B1) Intrinsic signal imaging from onemouse showing responses to pure tones (3, 10, and 30 kHz) superimposed on the auditory cortex surface vasculature. Three

auditory cortical areas (A1, A2, and AAF) are identified based on tonotopic patterns. Red squares indicate the locations of subsequent two-photon imaging in (B4).

(B2) In vivo two-photon image of GCaMP6s- (green) and tdTomato- (red) expressing cells in L2/3 of A1 of an awake mouse.

(B3) Responses of a representative L2/3 pyramidal cell to tone pips of 17 different frequencies (columns) at three intensities (rows). An average trace across five

trials is shown for each tone, and the red asterisk indicates the best frequency.

(B4) Activity map showing the best frequency of individual pyramidal cells within fields indicated in (B1).

(C) Top: heat map of inferred spikes for a representative pyramidal cell in response to a 7-s, 18.9-kHz tone over 20 trials. Bottom: average trace of inferred spikes

across trials. au, arbitrary units.

(D) Prolonged tones evoke responses with diverse temporal patterns in awake mice but elicit only transient excitation under anesthesia. Average responses of

four pyramidal cells to an 18.9-kHz tone in the awake (black) and anesthetized (green) state.

(E) Pyramidal cell responses are more temporally dynamic in the awake state. Left: comparison of the inferred spike rates during the first 1 s and the last 1 s of the

tone in individual cells in the awake state. Each point represents a single cell (n = 3 mice, 239 cells). Right: the same cells in the anesthetized state.

(F) Top: fraction of cells with significant excitatory (Exc) and inhibitory (Inh) responses across mice. NR, nonresponding cells. Bottom: fraction of excited and

inhibited cells shown separately for individual mice. **p < 0.01.

See also Figure S1.
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We used adeno-associated virus (AAV) vectors to express the

calcium indicator GCaMP6s (Chen et al., 2013) in auditory cortex

neurons of transgenic mice containing the activity-independent

reporter tdTomato in GABAergic neurons (Gad2-IRES-Cre 3

ROSA-LSL-tdTomato). This allowed us to optically distinguish

glutamatergic pyramidal cells (green) from GABAergic interneu-

rons (green + red) (Figure 1B2). Two to three weeks following

virus injection and the implantation of a glass window over audi-

tory cortex, we performed intrinsic signal imaging to map the

precise position of A1. Responses to pure tones of three fre-

quencies (3, 10, and 30 kHz) routinely revealed three cortical re-

gions that displayed tonotopic organization (Figure 1B1). These

results are in agreement with previous coarse mapping studies

of mouse auditory cortex (Guo et al., 2012; Issa et al., 2014)

that identified the areas as A1, secondary auditory cortex (A2),

and the anterior auditory field (AAF). We registered intrinsic

signal images to the surface vasculature to guide cellular imag-

ing to fields within A1.

We used brief tone pips (ranging from 2 to 40 kHz and 30 to

70 dB, 1-s duration) and two-photon imaging of GCaMP6s

to examine the response properties of individual pyramidal

cells in L2/3 (120–250 mm beneath the pial surface). On average,

31.0% ± 4.4% of GCaMP6s-expressing pyramidal cells

(n = 1,480 cells, 16 imaging fields, 8 mice) revealed increases

in activity (measured as dF/F) in response to at least one fre-

quency. Consistent with previous studies of A1 (Rothschild

et al., 2010; Schreiner et al., 2010; Sutter, 2000), 42% of respon-

sive L2/3 pyramidal cells (n = 550) displayed ‘‘V-shaped’’ tonal

receptive fields (TRFs; Figure 1B3). To examine the spatial orga-

nization of tuning properties at the cellular level, we constructed

activity maps representing the best frequencies of responsive

cells. As previously reported for cellular calcium imaging in A1

(Bandyopadhyay et al., 2010; Issa et al., 2014; Rothschild

et al., 2010), we observed a cellular-level tonotopic organization

that coarsely adhered to the tonotopic axis identified by macro-

scopic imaging (Figure 1B4). Together, these results indicate

that we can reliably target cells in A1, and all subsequent exper-

iments were conducted in the middle-frequency (10–20 kHz) re-

gion of this cortical area.

Whereas most studies of auditory processing have been per-

formed in anesthetized animals, sensory representations could

be different in the awake state. For example, some studies of

cortical neurons suggest that tones evoke primarily transient ac-

tivity at sound onset or offset (DeWeese et al., 2003; Volkov and

Galazjuk, 1991), whereas other studies have highlighted the fact

that sustained responses are more prevalent in the awake state

(Luczak et al., 2013; Wang et al., 2005). We next examined the

temporal features of auditory responses under our conditions

using prolonged (5–9 s) pure tones. To better estimate the time

course of evoked activity, we calculated the inferred spike rate

from changes in fluorescence using deconvolution (Vogelstein

et al., 2010) and used a single frequency based on the tone

that activated the most cells during TRF mapping of each field.

In awake mice, prolonged tones evoked reproducible responses

in individual pyramidal cells across trials (Figure 1C) and individ-

ual cells displayed a variety of temporal patterns: sustained in-

creases in activity, responses that ramped up, transient activity

at tone onset, and sustained inhibitory responses (Figures 1C
and 1D). These features are not due to our imaging approach,

becausewe observed similar patterns of excitation and inhibition

in electrophysiological recordings of single-unit activity (Fig-

ure S1). Measuring the area of the response during the tone

revealed that a similar fraction of cells responded with net exci-

tation or inhibition (Figure 1F; excitation: 23.2% ± 3.2%; inhibi-

tion: 24.7% ± 2.3%; n = 239 cells, 3 mice). We next imaged

the same cell populations during anesthesia to test whether

the temporal structure of responses and prominent inhibition

was dependent on brain state. Remarkably, tones evoked only

transient excitation at sound onset or offset in the anesthetized

state (Figures 1D and 1E). To quantify the change in response ki-

netics, we calculated an onset response index for each excited

cell as (onset response� sustained response)/(onset response +

sustained response), where onset and sustained responses

represent the inferred spike rates during the first and last second

of tones, respectively. This index indicated a significant shift

toward transient responses during anesthesia (awake: �0.46 ±

0.12; anesthetized: 0.83 ± 0.04; p < 0.001). Furthermore, in

contrast to the equal proportion of cells with excitatory and inhib-

itory responses during wakefulness, inhibitory responses were

entirely absent in the anesthetized state (Figure 1F; excitation:

30.6% ± 6.4%; inhibition: 0%). These results demonstrate that

sound representations are dramatically different in the anesthe-

tized state and highlight the importance of studying cortical pro-

cessing during wakefulness.

Daily Passive Sound Experience Produces Long-Lasting
Cortical Habituation
Having characterized responses to prolonged pure tones in

naive mice, we next investigated how they are affected by

repeated experience. To address this, we imaged the activity

of ensembles of L2/3 pyramidal cells across 5 days of passive

exposure to the same tones (Figure 2A; 70 dB, 5- to 9-s duration,

200 trials/day). Under these conditions, brief daily experience

(total of�20min/day) caused a marked change in A1 sound rep-

resentations: cells excited by the tone became sparser. Remark-

ably, experience also caused a dramatic increase in the number

of cells inhibited by the tone (Figure 2A), and cells that were

initially excited by the tone in naive mice switched to being in-

hibited after daily experience (Figure 2B). Overall, the fraction

of excited cells in each imaging field (n = 519 cells, 8 mice)

was markedly diminished (Figure 2C) (day 1: 19.9% ± 2.7%;

day 5: 6.1% ± 1.1%; p = 0.001) and the fraction of inhibited cells

doubled (day 1: 12.5% ± 3.4%; day 5: 25.4% ± 4.2%; p = 0.002).

Consequently, the ratio of excited to inhibited cells was reduced

by 10-fold (2.96 ± 0.80 on day 1 to 0.32 ± 0.08 on day 5; p = 0.02).

We studied the time course of the changes in response strength

using a separate change index (CI) for excitation and inhibition

(Experimental Procedures). Excitation progressively decreased

with little recovery from previous days, whereas inhibition grad-

ually increased (Figure 2D). The daily change index calculated

between day 1 and day 5 indicated a significant reduction

in the strength of excitation (Figure 2E; CI = �0.63 ± 0.05,

p < 0.001). Although data analyses using spike inference can

be affected by signal-to-noise ratio (Lütcke et al., 2013), our con-

clusions were identical when dF/F values were used for ana-

lyses. These findings were also insensitive to other changes in
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Figure 2. Daily Passive Sound Experience

Induces a Long-Lasting Habituation of Sen-

sory Representations

(A) Top: schematic of the protocol for sound

experience and chronic imaging. Mice were

passively exposed to 5- to 9-s tones for 200 trials/

day over 5 consecutive days. Bottom:maps of L2/3

pyramidal cell activity from one animal in response

to 18.9-kHz tones show that excitation becomes

sparser and inhibition becomes denser after 5 days

of sound experience. Bottom left: map of all imaged

pyramidal cells.

(B) Average sound-evoked responses from three

cells on day 1 (black) and day 5 (blue).

(C) Top: fraction of cells with significant excitatory

and inhibitory responses across mice. Bottom:

fraction of cells shown separately for individual

mice (n = 8 mice, 519 cells).

(D) Average (solid) and SEM (shading) of the change

index across days. Each data point represents a

block of 50 trials. Excitatory response amplitudes

gradually decrease and inhibitory responses in-

crease over days.

(E) Daily change index of excitatory responses in

individual cells reveals a reduction in the strength of

excitation from day 1 to day 5 (n = 104 excited

cells).

Error bar represents SEM. **p < 0.01, ***p < 0.001.

See also Figures S1–S5.
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image analysis parameters, such as different amounts of neuro-

pil signal subtraction (Figure S2). Indeed, electrophysiological

recordings of single-unit activity revealed a similar shift to

tone-evoked inhibition after daily sound experience (Figure S1).

Furthermore, cell TRFs measured before and after experience

indicated that the changes in excitation were selective for the

experienced frequency (Figure S3), ruling out the possibility

that our results reflect a nonspecific effect due to changes in

brain state. Taken together, these findings indicate that repeated

passive experience over days induces a progressive habituation

in the representation of the experienced tone in A1 L2/3 pyrami-

dal cells. Furthermore, habituation in A1 is not just a simple with-

drawal of excitation; rather it also reflects a pronounced increase

in inhibitory responses to the experienced stimulus. This sensory

habituation provides a way for the cortex to filter out information

lacking behavioral relevance.

Increased Inhibition after Habituation Reflects the
Upregulation of SOM Cell Activity in A1
We next considered whether the experience-dependent plas-

ticity of auditory responses in L2/3 pyramidal cells arises locally

within A1 or whether it is inherited from upstream subcortical

structures, such as thalamus or inferior colliculus. To address

this question, we selectively targeted GCaMP6s to layer 4 (L4)

thalamorecipient neurons using Cre-dependent vectors and

Scnn1a-Cre mice (Figure 3A). We imaged the responses of L4
4 Neuron 88, 1–13, December 2, 2015 ª2015 Elsevier Inc.
cells in these mice across 5 days of expe-

rience to prolonged tones (Figure 3B). Like

L2/3 pyramidal cells, L4 neurons in naive

mice (day 1) responded to prolonged
pure tones with diverse temporal patterns (Figure 3C). However,

after 5 days of passive tone exposure, there was only a minor

reduction in the fraction of cells with excitatory responses to

the experienced tone (Figure 3D; day 1: 25.0% ± 2.8%; day 5:

20.1% ± 5.7%; p = 0.42, n = 4 mice, 398 cells). Interestingly,

the small change in excited cells was accompanied by a similar

reduction in the fraction of inhibited cells (Figure 3D; day 1:

23.3% ± 5.5%; day 5: 17.1% ± 2.2%; p = 0.22). Thus, in contrast

to the 10-fold decrease in the ratio of excited to inhibited L2/3 py-

ramidal cells produced by passive experience, this ratio re-

mained unchanged in L4 (day 1: 1.50 ± 0.46; day 5: 1.35 ±

0.46; p = 0.36). Furthermore, the strength of excitatory re-

sponses showed only a small decrease during day 1 that re-

mained virtually constant during the additional days of tone

experience (Figure 3E). This reduction in excitation wasmatched

by a similar reduction in the magnitude of inhibitory responses

(Figure 3E). Overall, the daily change index between day 1 and

day 5 indicated only a minor reduction in the strength of excita-

tion across the cell population (Figure 3F; CI = �0.12 ± 0.07,

p = 0.11). These weak effects of experience in L4 thalamoreci-

pient cells make it unlikely that the marked habituation in L2/3

is inherited from upstream subcortical sources, and suggest

that experience produces changes in the cortex itself.

Given our results suggesting a cortical origin for the increased

inhibition of L2/3 pyramidal cells, we examined whether local

GABAergic interneurons contribute to habituation. We first
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Figure 3. Sound Experience Causes Only a Weak and Balanced Reduction of Excitation and Inhibition in L4 Thalamorecipient Cells

(A) Left: canonical cortical circuit diagram. Top right: GCaMP6s targeting approach. Bottom right: in vivo two-photon image of GCaMP6s-expressing L4 neurons.

(B) Top: protocol for sound experience and chronic imaging. Bottom: maps of L4 cell responses in onemouse to 13-kHz tones reveal only a small reduction in the

fraction of excited and inhibited cells after daily experience. Bottom left: all imaged cells.

(C) Average sound-evoked responses from three L4 cells on day 1 (black) and day 5 (blue).

(D) Top: fraction of L4 cells with significant excitatory and inhibitory responses across mice. Bottom: fractions of cells shown separately for individual mice (n = 4

mice, 398 cells).

(E) Daily experience causes only a small and balanced decrease in the strength of excitatory and inhibitory responses. Average (solid) and SEM (shading) of

change index for blocks of 50 trials plotted across days.

(F) Daily change index of excitatory responses in individual cells does not show a significant effect of experience from day 1 to day 5 (n = 99 excited cells). Error bar

represents SEM.

See also Figures S2 and S5.
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probed the tdTomato-labeled GAD2+ cells that were simulta-

neously imaged in L2/3 during passive experience. However,

we found that daily tone experience produced variable effects

across this cell population (Figure S4). We considered the possi-

bility that modest effects at the population level could arise if

experience had different and potentially opposing actions on

particular subtypes of interneurons. We thus investigated expe-

rience-dependent plasticity by separately targeting the two

major interneuron subtypes underlying the majority of L2/3

inhibition (Pfeffer et al., 2013), parvalbumin-expressing and so-

matostatin-expressing cells, using conditional expression of

GCaMP6s in Cre mice (PV-Cre and SOM-IRES-Cre).

In naive mice, whereas PV cells responded to prolonged pure

tones with temporal patterns similar to pyramidal cells, inhibitory

responses weremore prevalent in the PV cell population (Figures

4B and 4C; excitation: 15.1% ± 2.8%; inhibition: 46.7% ± 2.3%;

n = 174 cells, 5 mice). After 5 days of sound experience, the frac-
tion of PV cells with excitatory responses to the same tones was

markedly reduced (day 5: 5.0% ± 1.8%; day 1 versus day 5,

p = 0.03), whereas inhibitory responses were significantly

enhanced (day 5: 67.1% ± 4.5%; day 1 versus day 5,

p = 0.01). In addition, daily experience caused a large reduction

in the strength of excitatory responses in PV cells (Figure 4D;

CI = �0.66 ± 0.07, p < 0.001). Together, these results indicate

that the effects of experience on PV cells mirror those of L2/3 py-

ramidal cells. Importantly, the strong experience-dependent

reduction in PV cell activity suggests they are not the source of

the enhanced pyramidal cell inhibition during habituation.

Compared to PV cells, prolonged tones evoked distinctly

different responses in SOM cells in naive mice: the majority of

SOM cells were excited by tones, whereas only a minor fraction

of cells were inhibited (Figures 4E–4G; excitation: 69.6%± 6.7%;

inhibition: 6.4% ± 1.1%; n = 112 cells, 5 mice). Indeed, the ratio

between excited and inhibited cells was significantly higher in
Neuron 88, 1–13, December 2, 2015 ª2015 Elsevier Inc. 5
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Figure 4. Passive Experience Selectively Enhances Excitatory Responses of SOM Cells

(A) In vivo two-photon image of GCaMP6s-expressing L2/3 PV cells.

(B) PV cell responses to prolonged tones and the effect of experiencemirror pyramidal cells. Average sound-evoked responses from four PV cells on day 1 (black)

and day 5 (blue).

(C) Like pyramidal cells, PV cell excitation becomes sparser and inhibition becomes denser after 5 days of sound experience. Top: fraction of PV cells with

significant excitatory and inhibitory responses across mice. Bottom: fraction of cells shown separately for individual mice (n = 5 mice, 174 cells).

(D) Daily change index of excitatory responses in individual PV cells shows a strong reduction in excitation from day 1 to day 5 (n = 29 excited cells).

(E) In vivo two-photon image of GCaMP6s-expressing L2/3 SOM cells.

(F) Sensory experience increases tone-evoked SOM cell activity. Average sound-evoked responses from four SOM cells on day 1 (black) and day 5 (blue).

(G) Top: fraction of SOM cells with significant excitatory and inhibitory responses acrossmice. Bottom: fraction of cells shown separately for individual mice (n = 5

mice, 112 cells).

(H) Daily change index of excitatory responses in individual SOM cells reveals a significant increase in the strength of excitation from day 1 to day 5 (n = 91 excited

cells).

Error bars represent SEM. *p < 0.05, **p < 0.01, ***p < 0.001.

See also Figures S2, S4, and S5.

Please cite this article in press as: Kato et al., Flexible Sensory Representations in Auditory Cortex Driven by Behavioral Relevance, Neuron (2015),
http://dx.doi.org/10.1016/j.neuron.2015.10.024
SOM cells compared to all other neuron types (SOM cells: 12.5 ±

0.4; L2/3 pyramidal cells: 3.0 ± 0.8; L4 cells: 1.5 ± 0.5; PV cells:

0.34 ± 0.07; p < 0.0001, one-way ANOVA followed by Tukey’s

post hoc test). Intriguingly, daily sound experience had a dramat-

ically different action on the responses of SOM cells compared

to PV and pyramidal cells: passive tone exposure increased

the strength of tone-evoked SOM cell excitation (Figures 4F

and 4H; CI = 0.39 ± 0.04, p < 0.001). Indeed, 58.0% of all SOM

cells showed significantly larger responses on day 5 compared

to day 1, whereas only 9.8% showed the opposite (stronger

day 1 responses). Although the fraction of excited cells only

slightly increased (day 5: excitation: 76.1% ± 6.2%; day 1 versus

day 5 excitation, p = 0.32), this is likely due to the fact that a large

majority of SOM cells are already excited by tones before daily

experience. Furthermore, the experience-induced enhancement

of SOM cell-evoked activity was most prominent during the sus-

tained component of responses, consistent with the pronounced

suppression of sustained activity we observed in L2/3 pyramidal

cells (Figure S5). Taken together, these results suggest that the
6 Neuron 88, 1–13, December 2, 2015 ª2015 Elsevier Inc.
experience-dependent increase in inhibition of L2/3 pyramidal

cells reflects a selective enhancement of sound-evoked activity

in SOM-expressing interneurons.

Auditory Cortex Contributes to a Sound Detection
Behavioral Task
Our results indicate that repeated daily experience with the same

tones induces a habituation of responses in A1 L2/3 through the

recruitment of stronger local inhibition. We hypothesized that we

might be able to reverse habituation by increasing the behavioral

relevance attached to the sound. To test this idea, we investi-

gated whether sensory representations of a habituated tone

are enhanced during sound-guided behavior using a sound-

offset detection task in head-fixed mice (Figure 5A). We trained

water-restricted mice to lick for a water reward (‘‘hits’’) during

a 1-s time window (answer period) immediately following the

offset of the same variable-length (5–9 s) pure tone used for

habituation. Trials in which licks occurred during the last 1 s of

the tone were terminated and considered ‘‘false alarms.’’ Failure
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Figure 5. Auditory Cortex Contributes to a

Sound-Offset Detection Task

(A) Schematic of the task structure. After the intertrial

interval (ITI), a target sound (5- to 9-s pure tone) is

delivered. Licking during a 1-s answer period imme-

diately following the target offset triggers a water

reward. Licksduring the last 1 sof the target soundare

falsealarms (FAs) and terminate the trial. On randomly

interleaved trials, auditory cortex ofVGAT-ChR2mice

is illuminated with LED pulses to silence the cortex.

(B) Left: learning curve from a representative mouse.

Right: lick latency averaged across trials within each

day for the same mouse shown in the left panel.

(C) Left: schematic of the experimental setup. Right:

representative psychometric curves for behavioral

performance during LEDoff trials (black) and LEDon

trials (blue) for one mouse.

(D) Psychometric curves averaged across all mice

(n = 5 mice) with contralateral silencing show a sig-

nificant increase indetection threshold in LEDon trials.

(E) Left: schematic of control experiments in the

same mice using ipsilateral cortical silencing. Right:

psychometric curves for ipsilateral silencing in the

same mouse shown in (C).

(F) Psychometric curves averaged across all mice

with ipsilateral silencing show no change in detec-

tion threshold between LEDon trials and LEDoff trials.

Error bars represent SEM.

See also Figure S6.
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to lick during the answer period was scored as a ‘‘miss.’’ Mice

learned this behavior rapidly and reached >80% accuracy within

1–2 weeks of daily training (�200 trials/day; Figure 5B). This

sound-offset detection configuration gave us the opportunity

to monitor sound-evoked activity in A1 without interference

from elevated motor function during licking (McGinley et al.,

2015; Schneider et al., 2014; Zhou et al., 2014) or reward-trig-

gered activity (Petreanu et al., 2012; Pi et al., 2013).

Whether auditory cortex contributes to the detection of simple

sounds in rodents is unclear, because results from previous

lesion or pharmacological inactivation studies have ranged

from almost no effect to complete deafness (Jaramillo and

Zador, 2011; Kelly and Glazier, 1978; Pai et al., 2011; Talwar

et al., 2001). Therefore, we first examined whether auditory cor-

tex plays a role in the sound-offset detection task. We tested this

by acutely silencing auditory cortex during behavior using

transgenic mice (VGAT-ChR2-EYFP) that express channelrho-

dopsin-2 (ChR2) in all GABAergic cells. We implanted a glass

window over auditory cortex for LED illumination in these mice

and drove GABAergic neurons to suppress activity of excitatory

cells (Figure S6). Tones were presented at multiple intensities to

measure the psychometric function for sound detection, and

contralateral auditory cortex was silenced on 20%–30% of

randomly interleaved trials (Figure 5C). Cortical photoinactiva-

tion shifted the psychometric curve to the right (n = 5 mice; Fig-

ures 5C and 5D), indicating an increase in threshold (63%

success rate) for sound detection (LEDon: 51.9 ± 4.0 dB; LEDoff:

40.7 ± 2.6 dB; p = 0.03). In control experiments, LED illumination

of ipsilateral cortex in the same mice had no effect on behavior

(Figures 5E and 5F), ruling out the possibility of nonspecific

effects due to illumination. Curiously, when the contralateral

cortical silencing experiments were repeated over several days
the shift of the psychometric curve became progressively

smaller, suggesting compensatory changes in subcortical cir-

cuits (Figure S6). Taken together, these results show that

although subcortical structures alone are sufficient for simple

sound detection, auditory cortex plays an important role in

improving detection sensitivity.

Sound-Guided Behavior Reverses A1 Habituation
We next tested whether sound representations in A1 change

when tones gain behavioral relevance for the animal. Mice ex-

pressing GCaMP6s in L2/3 pyramidal cells were trained on the

sound-offset detection task after 5 days of habituation to the

same tones. Once mice achieved >80% accuracy, we imaged

the same populations of A1 cells in alternating blocks of

trials (100 trials/block) when mice were performing the task

(‘‘behaving’’) and when the lick port was removed (‘‘passive’’)

(Figure 6A). As expected for habituated sensory representations,

L2/3 pyramidal cell excitation was sparse and inhibitory re-

sponses dominated during the passive block (Figure 6A).

Although previous studies have reported changes in A1 sensory

representations after learning (Bakin et al., 1996; Blake et al.,

2002; Polley et al., 2006; Rutkowski and Weinberger, 2005), we

did not observe an increase in sensory representations in the

passive condition after training in the simple sound detection

task. However, during engagement in the task, the fraction of

cells with excitatory responses increased (Figures 6A–6C) (pas-

sive: 4.5% ± 2.0%; behaving: 7.5% ± 2.1%; p = 0.04, n = 5 mice,

414 cells) and inhibitory responses were slightly reduced

(passive: 45.8% ± 7.9%; behaving: 41.2% ± 9.3%; p = 0.10).

Furthermore, a change index comparing the strength of excit-

atory responses during behaving and passive periods indicated

a significant enhancement in excitation during task engagement
Neuron 88, 1–13, December 2, 2015 ª2015 Elsevier Inc. 7
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Figure 6. Engagement in Sound-Guided Behavior Enhances L2/3 Sound Representations

(A) Top: schematic showing the protocol for comparing sound representations between behaving and passive blocks within the same day. Bottom: maps of L2/3

pyramidal cell activity during 18.9-kHz tones show that excitation is denser during behavior.

(B) Average sound-evoked responses from three cells during behaving (red) and passive (black) conditions.

(C) Engagement in the behavioral task causes a significant increase in the fraction of cells with excitatory responses (n = 5 mice, 414 cells).

(D) Change index indicates an increase in strength of excitatory response during task engagement compared to the passive condition (n = 31 excited cells).

Error bar represents SEM. *p < 0.05.

See also Figure S7.
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(Figure 6D; CI = 0.26 ± 0.10, p = 0.01). As a result, 51.6% of

excited cells showed significantly stronger net activity during

the behaving block, whereas only 19.4% showed more activity

in the passive condition. The effects were not due to the order

of passive and behaving blocks (Figure S7) and were unlikely

to result from differences in levels of spontaneous activity,

because baseline fluorescence intensity of individual cells was

identical during the two conditions (behaving/passive = 0.99 ±

0.04, p = 0.85). These results indicate that sound representations

in L2/3 pyramidal cells are enhanced during sound-guided

behavior, resulting in the partial reversal of cortical habituation.

We next tested potential sources of the enhanced auditory re-

sponses in L2/3 pyramidal cells during behavior. We first studied

the impact of sound-guided behavior on sensory representa-

tions in mice expressing GCaMP6s in thalamorecipient L4

neurons (Figure 7A). In contrast to L2/3 pyramidal cells, the

fraction of cells responding with tone-evoked excitation or inhi-

bition were identical during passive listening and sound-driven

behavior (Figure 7B; excitation passive: 18.4% ± 3.6%; excita-

tion behaving: 17.5% ± 2.0%; p = 0.68; inhibition passive:

24.2% ± 4.9%; inhibition behaving: 24.1% ± 3.9%; p = 0.98;

n = 5 mice, 482 cells). Similarly, the strength of excitatory re-

sponses was unchanged between the two conditions (Figure 7C;

CI = �0.02 ± 0.05, p = 0.66). These results make it unlikely that

the enhanced tone-evoked responses in L2/3 pyramidal cells

during sound-guided behavior reflect changes in circuits up-

stream of A1. We repeated the experiments in mice expressing

GCaMP6s in SOM and PV cells to explore whether tone-evoked

responses of A1 interneurons are modulated by sound-guided
8 Neuron 88, 1–13, December 2, 2015 ª2015 Elsevier Inc.
behavior. Intriguingly, sound-guided behavior had the opposite

effect on SOMcells compared to L2/3 pyramidal cells (Figure 7D;

n = 4 mice, 109 cells): the fraction of cells excited by the tone

during the behaving block was significantly smaller (Figure 7E)

(passive: 63.0% ± 8.1%; behaving: 43.8% ± 8.6%; p = 0.01)

and the fraction of inhibited cells tended to increase (passive:

7.0 ± 2.4; behaving: 16.1 ± 4.5; p = 0.19). In addition, the strength

of tone-evoked excitation across the cell population was mark-

edly reduced during behavior (Figure 7F; CI = �0.33 ± 0.04,

p < 0.001) and the majority of SOM cells had smaller responses

during behaving versus passive blocks (passive response >

behaving response: 62.3%; behaving > passive: 1.4%). Although

the very sparse excitation of PV cells following habituation made

it difficult to perform a fine comparison, PV cell responses were

not obviously different between behaving and passive condi-

tions (Figures 7G–7I). Taken together, these results suggest

that sound-guided behavior acutely enhances sensory repre-

sentations in A1 via a reduction in local SOM cell-mediated

inhibition.

DISCUSSION

In this study, we show that daily passive experience with simple

tones causes a marked reduction in the excitatory responses of

L2/3 pyramidal cells in primary auditory cortex. This long-lasting

form of habituation develops over days and is accompanied by

an increase in inhibitory responses to the experienced tones.

We find that cortical habituation is unlikely to involve experi-

ence-dependent changes relayed to A1 from subcortical regions
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Figure 7. Engagement in Sound-Guided Behavior Suppresses

Evoked SOM Cell Activity

(A and B) Imaging L4 excitatory cells reveals no effect of task engagement on

the fraction of excited or inhibited cells (n = 5 mice, 482 cells).

(C) Change index shows no change in excitatory response strength between

passive and behaving conditions (n = 105 excited cells).

(D andE) ImagingL2/3SOMcells indicates a significant decrease in the fraction

of cells with tone-evoked excitation during behavior (n = 4 mice, 109 cells).

(F) Change index for individual SOM cells shows a marked decrease in the

strength of excitatory responses in the behaving versus passive condition

(n = 69 excited cells).

(G and H) Sound-guided behavior has no obvious effect on the fraction of

excited or inhibited PV cells (n = 4mice, 92 cells; excitation: p = 0.97; inhibition:

p = 0.26).

(I) Change index shows no change in excitatory response strength between

passive and behaving conditions (n = 4 excited cells, p = 0.90).

(J) Schematic illustrating the proposed bidirectional modulation of A1 sound

representations by SOM cells. Habituation increases SOM cell activity, which

leads to decreased sound representations in L2/3 pyramidal cells. In contrast,

engagement in sound-guided behavior suppresses SOM cell activity, leading

to the enhancement of sound representations in L2/3 pyramidal cells.

Error bars represent SEM. **p < 0.01, ***p < 0.001.
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but rather reflects a selective increase in the activity of local SOM

interneurons. We also show that engagement in sound-guided

behavior rapidly elicits opposing changes in A1 sound represen-

tations; namely, tone-evoked responses of L2/3 pyramidal cells

increase, whereas SOMcell excitability is reduced. These results

demonstrate that sensory representations in auditory cortex can

be flexibly modulated according to the behavioral relevance

attached to acoustic stimuli. SOM cells are poised to govern

bidirectional changes in A1 sensory representations based on

whether stimuli have no significance and should be ignored

(habituation) or when the same stimuli become relevant to the

animal (sound-guided behavior).

Experience-Dependent Modulation of A1 Sensory
Representations
We find that brief daily sound experience in adult mice causes a

progressive habituation of L2/3 responses to experienced tones

that involves a 10-fold reduction in the excitation/inhibition ratio

of population activity. Thus, habituation in A1 is not simply a loss

of responsiveness to repeatedly experienced stimuli; rather it re-

flects an active process that recruits stronger inhibition. Previous

studies have implicated inhibitory neurons in cortical plasticity

during the critical period (Hensch et al., 1998). Our results are

consistent with the idea that GABAergic interneurons also play

a role in experience-dependent plasticity later in adulthood.

Indeed, sensory experience enhanced the strength of excitatory

responses in SOM cells. The fact that PV cells receive strong

inhibitory input from SOM cells (Pfeffer et al., 2013) may explain

our finding that habituation leads to reduced tone-evoked exci-

tation and increased inhibition of PV cells. These results suggest

that habituation in A1 relies on experience-dependent changes

in a specific subtype of inhibitory circuit.

Repeated passive exposure to a tone during early critical pe-

riods of development results in an overrepresentation of the

experienced sound frequency in tonotopic maps of auditory cor-

tex (Barkat et al., 2011; de Villers-Sidani et al., 2007; Zhang et al.,

2001). In contrast, acute recordings from anesthetized animals

after long-term sound exposure report that A1 sensory represen-

tations are largely refractory to experience-dependent changes

in adulthood (Bao et al., 2001; Kilgard and Merzenich, 1998;

Zhang et al., 2001; but see Noreña et al., 2006). What accounts

for the difference between the lack of effect in previous electro-

physiological studies and our results showing strong habituation

in L2/3 to experienced stimuli? One possibility reflects differ-

ences in the cell populations studied. We found that experience

had unique effects on sound representations of L2/3 pyramidal

cells, L4 neurons, and SOM cells. Because unit recordings are

prone to picking up cells with high firing rates, it is possible

that previous experiments have been biased toward recordings

of L4 or SOM cells after habituation. Another possibility is the

difference in cortical activity between anesthetized and awake

animals. For example, the activity of GABAergic interneurons

can be strongly attenuated in the anesthetized state (Haider

et al., 2013; Kato et al., 2012), and it is possible that inhibition un-

derlying habituation might be more pronounced in the awake

state.

Electrophysiological studies in cats have reported perturbed

cortical tonotopy after extensive sound exposure (tone bursts
Neuron 88, 1–13, December 2, 2015 ª2015 Elsevier Inc. 9
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maintained without interruption for 1.5–5 months) (Noreña et al.,

2006). However, unlike the results we show, this extensive sound

exposure generated a loss of responsiveness at the level of tha-

lamocortical input. Another previous study in cat auditory cortex

found that repeated tone exposure could lead to a short-term

reduction in responses to experienced tones that recovered

within 30 min (Condon and Weinberger, 1991). This does not

necessarily conflict with our results, because we also observed

modest changes in sound-evoked excitation during the first

day of sound experience and habituation progressively accumu-

lated over several days.

We find that the experience-induced enhancement of SOM

cell activity was most pronounced during the sustained compo-

nent of sound-evoked responses. Consistent with this, habitua-

tion of L2/3 pyramidal cell activity was more prominent for late

responses to prolonged tones compared to responses at sound

onset. Sound onsets are likely to signal more critical information

(e.g., approach of a predator) than sustained sound features.

Thus, the mechanisms we describe may provide animals with

the ability to selectively filter out sustained sounds (which are

of limited behavioral relevance) while preserving the ability to

detect sound onsets. Although we do not exclude the possibility

that other mechanisms could contribute to auditory habituation

under different conditions, our results suggest that SOM cells

can mediate experience-dependent filtering of prolonged sen-

sory input.

Contribution of A1 to Sound Detection
Previous lesion and pharmacological inactivation studies have

yielded inconsistent views of the role of auditory cortex in sound

detection (Jaramillo and Zador, 2011; Kelly and Glazier, 1978;

Pai et al., 2011; Talwar et al., 2001). We took advantage of an

acute and reversible optogenetic silencing approach to evaluate

the contribution of auditory cortex to a sound-offset detection

task. Acute optogenetic silencing of contralateral auditory cortex

caused a 10-dB increase in the sound-level threshold for detect-

ing pure tones. Thus, although subcortical systems alone are

sufficient for sound detection, auditory cortex contributes to

detection sensitivity, most likely via feedback corticofugal pro-

jections. This interpretation is consistent with recent work sug-

gesting that A1 amplifies midbrain-dependent sound-evoked

escape behavior in mice (Xiong et al., 2015). Interestingly, the

10-dB shift (approximately 3-fold increase in sound pressure)

we observe is remarkably similar to the 2- to 3-fold increase in

threshold for detection of visual contrast when visual cortex is

silenced during a visual detection task (Glickfeld et al., 2013).

Sensory cortices governing vision and audition may therefore

play similar roles in modulating simple stimulus detection driven

by subcortical circuits.

BidirectionalModulation of A1 Sensory Representations
Although the impact of sound-guided behavior on cortical re-

sponses has been explored previously, studies have come to

different conclusions. For example, it has been reported that

task performance can facilitate evoked responses to auditory

stimuli (Fritz et al., 2003; Jaramillo and Zador, 2011), whereas

other studies suggest that task engagement only modulates

spontaneous cortical activity (Otazu et al., 2009; Rodgers and
10 Neuron 88, 1–13, December 2, 2015 ª2015 Elsevier Inc.
DeWeese, 2014). Furthermore, previous studies in auditory

cortex have not examined the effects of learning or task engage-

ment in a cell-type-specific manner. Here we show that engage-

ment in sound-guided behavior rapidly reverses the effects of

habituation by enhancing sound representations in L2/3 pyrami-

dal cells. This occurs without an increase in L4 activity, indicating

that the effects of task engagement are not propagated from

subcortical auditory areas. Our results suggest that the suppres-

sion of tone-evoked SOM cell activity during sound-guided

behavior contributes to the enhanced representation of behav-

iorally relevant acoustic stimuli. We cannot rule out the possibility

that the use of prolonged tones and a sound-offset detection

task may account for differences between our findings and pre-

vious studies of task engagement that used more transient

sound stimuli (Otazu et al., 2009; Rodgers and DeWeese,

2014). Nevertheless, our results reveal a cellular mechanism

that contributes to the enhancement of sound representations

during active listening to sustained sounds.

Taken together, our results demonstrate the bidirectional

modulation of A1 sensory representations by passive experience

and engagement in sound-guided behavior and point to SOM

cells as a regulator of this flexibility (Figure 7J). What might un-

derlie the regulation of SOM cell activity? One possibility is that

SOM cell responses are shaped by neuromodulatory pathways

innervating A1 that are differentially engaged in an experience-

dependent fashion (Chen et al., 2015; Pinto et al., 2013; Polack

et al., 2013). An alternative possibility is that glutamatergic inputs

from higher cortical areas directly drive changes in SOM cells. It

is also possible that the control of SOM cells from sources

extrinsic to auditory cortex utilizes an indirect pathway mediated

by other local inhibitory neuron subtypes (Lee et al., 2013; Pfeffer

et al., 2013; Pi et al., 2013; Zhou et al., 2014). Although further

work is necessary to establish these detailed circuit mecha-

nisms, SOM cells appear to work as a gate in A1 that regulates

the flow of auditory information for further processing based on

the behavioral relevance of sensory input.

EXPERIMENTAL PROCEDURES

Animals and Surgical Approach

All procedures were in accordance with protocols approved by the UCSD

Institutional Animal Care and Use Committee and guidelines of the National

Institutes of Health. Mice were acquired from Jackson Laboratories (Gad2-

Cre [JAX 010802], PV-Cre [JAX 008069], SOM-IRES-Cre [JAX 013044],

Scnn1a-Cre [JAX 009613], VGAT-ChR2-EYFP [JAX 014548], and ROSA-

LSL-tdTomato [JAX 007908]) and housed in a roomwith a reversed light cycle.

Experiments were performed during the dark period.

Adult mice (>40 days old, male and female) were anesthetized with isoflur-

ane and injected with dexamethasone (2 mg/kg) intraperitoneally. A custom

stainless steel head bar was glued to the skull. Muscle overlying the right audi-

tory cortex was removed and a craniotomy (�23 3mm) wasmade, leaving the

dura intact. Viruses (AAV 2/9-syn-GCaMP6s, AAV 2/9-syn-FLEX-GCaMP6s;

Penn Vector Core, University of Pennsylvania) were injected at 5–15 locations

(250 mm deep from the pial surface for L2/3 imaging and 400 mm deep for L4

imaging, 20–30 nl/site). A glass window was placed over the craniotomy and

secured with dental acrylic. Water restriction (1–2 ml/day) was started

1 week after surgery and mice recovered for an additional 1–2 weeks before

imaging. Imaging for habituation and behavior experiments was conducted

28.4 ± 0.9 and 43.8 ± 1.8 days after viral injection, respectively. Pyramidal cells

with GCaMP-filled nuclei were excluded from the analyses, because they

are reported to show abnormal physiology (Tian et al., 2009). Under our
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conditions, only 4.8% ± 1.5% (habituation) to 8.1% ± 2.4% (behavior) of cells

displayed filled nuclei, demonstrating a stable expression in our experiments.

Imaging

Intrinsic signal images were acquired using a tandem lens macroscope and

12-bit CCD camera (CCD-1300 QF; VDS Vosskühler). Mice were isoflurane

anesthetized and injected with chlorprothixene (0.36 mg/kg, intraperitoneally).

Images of surface vasculature were acquired using green LED illumination

(540 nm), and intrinsic signals were recorded (27 Hz) using red illumination

(615 nm). Each trial consisted of a 1-s baseline followed by a 1-s sound stim-

ulus (75-dB pure tone with a frequency of 3, 10, or 30 kHz, 20 trials for each

frequency) and 30-s intertrial interval. Images of reflectance (R) were acquired

at 1,0243 1,024 pixels and downsampled to 5123 512 pixels by bilinear inter-

polation. Images during the response period (0.5–2 s from the sound onset)

were averaged and divided by the average image during the baseline. Images

were averaged across trials and Gaussian filtered. Mice recovered for at least

1 day before two-photon imaging.

GCaMP6s and tdTomato were excited at 920 nm (Mai Tai; Newport), and

images (5123 512 pixels covering�5003 500 mm)were acquired with a com-

mercial microscope (B-scope; Thorlabs) running ScanImage software (Vidrio

Technologies) using a 163 objective (Nikon) at 28.4 Hz. The fraction of inter-

neurons in L2/3 is estimated to be 26.3% (proportion of GCaMP-expressing

cells labeled with tdTomato; n = 16 fields from 8 mice). Images were acquired

from L2/3 (120–250 mm below the surface) or L4 (�350 mm below the surface).

Because our L2/3 imaging was restricted to L2 and superficial L3, it is unlikely

that our results were contaminated by thalamorecipient neurons reported in

deep L3 (Schiff and Reyes, 2012).

Mouse Behavior

Awake mice were head fixed under the two-photon microscope, and

GCaMP6s-expressing cells were imaged in one or two areas within A1. TRFs

of individual cells were measured with 1-s pure-tone pips covering 17 fre-

quencies (2–40 kHz, log-spaced) and three volumes (30, 50, and 70 dB SPL).

Sound stimuli were presented every 5 s in random order, and each stimulus

was presented for five to seven trials. Best frequency for each cell was deter-

mined as the frequency that evoked the strongest excitatory response. After

constructing the best-frequencymap, one areawas selected in themiddle-fre-

quency (10–20 kHz)-responding region of A1. Stimulus sound frequencies for

passive exposurewere chosen for individualmice as the frequency that evoked

excitation in the largest fraction of cells in the imaged field of view. Mice were

exposed to prolonged pure tones (70 dB, tone duration 5, 7, or 9 s, intertrial in-

tervals 9 s) 200 trials/day for 5 days in the head-fixed configuration. Therefore,

micewere head fixed for about 1 hr eachday, and the total soundexposurewas

�20 min/day. In both passive exposure and offset-detect behavior experi-

ments (see below), we delivered sounds with three different durations in

randomly interleaved trials to avoid the development of temporal expectation

(Jaramillo and Zador, 2011). In a subset of animals, TRFsweremeasured again

1 day after ending the passive exposure protocol.

Behavioral training was started after mice passively experienced the pro-

longed tones for 5 days as described above. The same sound stimuli used

for passive exposure were used for training. Mice were head fixed in front of

a lick port and were rewarded with water (�6 ml/trial) for licks during a 1-s

answer period immediately following the target sound offset. Licks during

the target sound (false alarm) were punished by the elongation of the target

sound. Each session lasted �200 trials (1–2 hr). In the optogenetic experi-

ments, the false-alarm period was set as the last 1 s of the target sound,

and licks during this period terminated the trial. To correct for the overestima-

tion of hit rates caused by false-alarm responses, we removed correct trials

that can be accounted for by the false-alarm rate (Glickfeld et al., 2013). In im-

aging experiments, the false-alarm period was the entire duration of the sound,

so that sound-evoked cellular activity occurred in the absence of licking. After

mice performed 100 trials of offset-detect behavior (behaving block), the lick

port was removed and mice quickly stopped attempting to lick. Mice were

passively exposed to the same sound stimuli for 100 trials (passive block). In

a subset of experiments, the lick port was placed in front of the mouse again,

and mice performed an additional 100 trials of offset-detect behavior. Licks

were detected by breaking an infrared beam (Island Motion), and water deliv-
ery was controlled by a solenoid valve (NResearch). The behavioral setup was

controlled by software (Dispatcher; http://brodylab.org) running on MATLAB

(MathWorks) communicating with a real-time system (RTLinux).

Auditory stimuli were delivered via a free-field electrostatic speaker (ES1;

Tucker-Davis Technologies). In experiments described in Figure 5 and Fig-

ure S6C, a coupler model electrostatic speaker (ES1) was connected to a

custom-made stainless steel earphone directly inserted into the ear canal.

Speakers were calibrated over a range of 2–40 kHz to give a flat response

(±1 dB). Stimuli were delivered to the ear contralateral to the chronic window,

unless otherwise noted.

Image Analysis

Lateral motion was corrected by cross-correlation-based image alignment.

Regions of interest (ROIs) corresponding to visually identifiable cells were

manually drawn, and pixels within each ROI were averaged to create a fluores-

cence time series, Fcell_measured(t). To correct for neuropil contamination (Chen

et al., 2013), ring-shaped background ROIs (starting at 2 pixels and ending at

8 pixels from the border of the ROI) were created around each cell ROI. From

this background ROI, pixels that contained cell bodies or processes from

surrounding cells were excluded. The remaining pixels were averaged to

create a background fluorescence time series, Fbackground(t). The correlation

coefficient between Fcell_measured(t) and Fbackground(t) measured 0.552 ±

0.004. The fluorescence signal of a cell body was estimated as Fcell_true(t) =

Fcell_measured(t) � 0.9 3 Fbackground(t). To ensure robust neuropil subtraction,

only cell ROIs that were at least 3% brighter than the background ROIs were

included. Although we cannot exclude some residual contamination of cellular

signals by neuropil responses, our conclusions are not dependent on the de-

gree of background subtraction (Figure S2). To account for slow drifts in abso-

lute fluorescence intensity, a normalized trace, Fnorm(t), was calculated as

Fcell_true(t)/F0(t), where F0(t) is a time-varying drifting trace estimated by

smoothing inactive portions of Fcell_true(t) using an iterative procedure. Fnorm(t)

was LOESS smoothed with a 1-s window and subsequently used for spike

probability inference based on a fast, nonnegative deconvolution method (Vo-

gelstein et al., 2010). Inferred spikes were then sorted into separate traces for

individual trials, Strial(t), based on the time of sound delivery. Z score was calcu-

lated as (Strial(t)� m)/s, where m refers to the mean during baseline in individual

trials (2.5-s period preceding sound onset) and s refers to the SD calculated

from concatenating traces of the baselines from all trials within each day.

This Z score trace was used for subsequent statistical analyses.

Cells were judged as significantly excited (inhibited) if they fulfilled two

criteria: (1) the area above baseline for individual trials was significantly larger

(smaller) than zero using the Wilcoxon signed-rank test, and (2) the peak pos-

itive-going (negative-going) amplitude exceeded a fixed threshold value.

Because tone durations varied between 5, 7, and 9 s, statistical analyses

were performed on the first 5 s of tones. Threshold for excitation (1.0 Z score)

was determined by receiver operator characteristic (ROC) analysis to yield a

90% true positive rate in TRF measurements. Because inhibitory responses

tend to be small in amplitude (Boyd et al., 2015; Peron et al., 2015), the

threshold for inhibition was set as half that for excitation (�0.5 Z score) to in-

crease detection sensitivity. Raising the threshold to �1.0 Z score reduced

the number of detected responses but did not qualitatively affect our findings.

The average sound-evoked response trace for each cell was derived from a

composite of responses to the three tone durations across trials. Area above

baseline of the average trace during tones was used for the calculation of

change index as CI = (areaafter � areabefore)/(areaafter + areabefore). CIs were

calculated separately for excitatory and inhibitory responses, and only cells

judged as responsive were included in the analysis. For the CI time course

plots, areas were calculated for individual 50-trial blocks on each day, and

they were compared to the area on the initial block of day 1. Daily CI between

day 5 and day 1 was calculated using the second half of trials on each day to

ensure that daily responses stabilized after the onset of imaging. Unless

otherwise stated, all statistical comparisons were performed using a two-

tailed t test.

Unit Recording and Cortical Silencing

On the day before recording, adult VGAT-ChR2 mice were anesthetized with

isoflurane and injected with dexamethasone (2 mg/kg). A head bar was
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implanted, and the skull over auditory cortex was thinned and covered with

cyanoacrylate glue. A1 was identified by intrinsic signal imaging, and a crani-

otomy (<500-mm diameter) was made over the middle-frequency area. The

craniotomy was covered with silicone elastomer between recordings. On

the day of recording, a 16-channel silicon probe (NeuroNexus; A1x16-5mm-

50 s-177-A16) was inserted into A1 of awake, head-fixed mice. Unit activity

was amplified (A-M Systems), digitized (National Instruments), and acquired

at 20 kHz with custom software in MATLAB. Prolonged pure tones (60 or

70 dB, 18.9 kHz, duration 9 s, intertrial interval 17 s) were delivered to the

ear contralateral to the recording. Units were isolated using an open-source,

K-means clustering algorithm and spike-sorting graphical user interface

(UltraMegasort2000; https://physics.ucsd.edu/neurophysics).

For cortical silencing during behavior, a glass window was implanted over

the right auditory cortex of VGAT-ChR2 mice as described above. After

training in the tone-offset detection task, a fiber-coupled LED (�20 mW,

470 nm, 1-mm fiber, 0.48 N.A.; Doric Lenses) was positioned 1–2 mm above

the glass window. In 30% of randomly interleaved trials, we delivered a train

of light pulses (10 ms, 20 Hz) to silence auditory cortex. Light pulses lasted

from 2 s before sound onset to 1 s after sound offset. Licks during the false-

alarm or answer period terminated the LED. In unit recording experiments to

confirm cortical silencing, the LED was positioned above the thinned skull.

The LED was turned on 2 s after the sound onset and lasted for 2 s on 50%

of the trials.
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