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Fuhrmann, Galit, Idan Segev, Henry Markram, and Misha Tsodyks.
Coding of temporal information by activity-dependent synapses. J Neu-
rophysiol 87: 140–148, 2002; 10.1152/jn.00258.2001. Synaptic transmis-
sion in the neocortex is dynamic, such that the magnitude of the postsyn-
aptic response changes with the history of the presynaptic activity.
Therefore each response carries information about the temporal structure
of the preceding presynaptic input spike train. We quantitatively
analyze the information about previous interspike intervals, contained
in single responses of dynamic synapses, using methods from infor-
mation theory applied to experimentally based deterministic and prob-
abilistic phenomenological models of depressing and facilitating syn-
apses. We show that for any given dynamic synapse, there exists an
optimal frequency of presynaptic spike firing for which the informa-
tion content is maximal; simple relations between this optimal fre-
quency and the synaptic parameters are derived. Depressing neocor-
tical synapses are optimized for coding temporal information at low
firing rates of 0.5–5 Hz, typical to the spontaneous activity of cortical
neurons, and carry significant information about the timing of up to
four preceding presynaptic spikes. Facilitating synapses, however, are
optimized to code information at higher presynaptic rates of 9–70 Hz
and can represent the timing of over eight presynaptic spikes.

I N T R O D U C T I O N

Synapses form the communication channels between pairs
of interconnected neurons. It has classically been assumed that
the main role of a synapse is to notify the postsynaptic neuron
that a presynaptic spike has occurred. However, this approach
may underestimate the role of neocortical synapses in infor-
mation processing in the brain. Electrophysiological recordings
from interconnected pairs of neocortical neurons reveal that
synaptic transmission is not static. Rather, synapses typically
undergo substantial activity-dependent changes in response to
presynaptic spike trains so that the magnitude of a postsynaptic
response (PSR) undergoes fast changes from one spike to
another, depending on the presynaptic pattern of interspike
intervals (ISIs) (Magelby 1987; Markram 1997; O’Donovan
and Rinzel 1997; Stratford et al. 1996; Tarczy-Hornoch et al.
1998, 1999; Thomson and Deuchars 1994; Thomson et al.
1993; Zador and Dobrunz 1997; Zucker 1989). This capacity
enables synapses to encode temporal information about the
timing of preceding presynaptic spikes in each single PSR.

Particularly, in depressing synapses, a short ISI is most
likely to be followed by a small PSR, and a long ISI is likely
to be followed by a large, recovered PSR (Fig. 1). Facilitating
synapses demonstrate somewhat more complicated dynamics,
but, in general, the response grows with successive presynaptic
spikes (Markram et al. 1998).

The magnitude of the PSR is determined not only by the
preceding ISIs, but also by the probabilistic nature of neuro-
transmitter release, resulting in trial-to-trial fluctuations in the
postsynaptic response (Allen and Stevens 1994; Korn et al.
1984; Larkman et al. 1997). The primary goal of this theoret-
ical study was to extract the informative component from the
total variability of the PSR and thereby to quantitatively ex-
plore the capacity of single responses of neocortical synapses
to encode temporal information about the timing of prior
presynaptic spikes. Toward this goal, it is natural to utilize
methods from information theory, originally developed for the
analysis of communication channels, as indeed synapses are
(Borst and Theunissen 1999; Cover and Thomas 1991; Rieke et
al. 1997; Shannon and Weaver 1948). Here we apply these
tools to both deterministic and probabilistic phenomenological
models of activity-dependent synaptic transmission, which re-
produce the average response of a neocortical synapse (Fig. 1)
(Abbott et al. 1997; Grossberg 1969; Markram et al. 1998;
Matveev and Wang 2000; Tsodyks and Markram 1997; Varela
et al. 1997).

In recent in vitro studies it was found that the short-term
synaptic dynamics in the neocortex are specific to the types of
neurons involved. For example, pyramidal-to-pyramidal con-
nections typically consist of depressing synapses, whereas py-
ramidal-to-interneuron connections typically bear facilitating
synapses (Galarreta and Hestrin 1998; Gupta et al. 2000;
Markram et al. 1998; Reyes et al. 1998; Stevens and Wang
1995; Thomson and Deuchars 1994). Here we study encoding
of temporal information by both these types of synapses. In
particular, we focus on the following questions. 1) What is the
dependence of information encoded by the synapse on the
frequency of the presynaptic spikes? 2) How does the infor-
mation depend on the biophysical parameters of the synapse?
3) How does the number of release sites affect information
encoding by the synapse? 4) How many spike times are rep-
resented in a postsynaptic response?

M E T H O D S

Phenomenological models of activity-dependent synapses
THE DETERMINISTIC MODEL FOR DYNAMIC SYNAPSES. This model
is based on the concept of a limited pool of synaptic resources
available for transmission (R), such as, for example, the overall
amount of neurotransmitter at the presynaptic terminals. Every pre-
synaptic spike, occurring at time tsp, causes a fraction USE (analogous

Address reprint requests to M. Tsodyks (E-mail: misha@weizmann.ac.il).

The costs of publication of this article were defrayed in part by the payment
of page charges. The article must therefore be hereby marked ‘‘advertisement’’
in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

J Neurophysiol
87: 140–148, 2002; 10.1152/jn.00258.2001.

140 0022-3077/02 $5.00 Copyright © 2002 The American Physiological Society www.jn.org



to the probability of release in the quantal model of synaptic trans-
mission) of the available pool to be utilized, and the recovery time
constant, �rec, determines the rate of return of resources to the avail-
able pool. In the depressing synapse, the synaptic parameters, USE and
�rec, are constant and together determine the dynamic characteristics
of transmission. The fraction of synaptic resources available for
transmission evolves according to the following differential equation

dR

dt
�

�1 � R�

�rec

� USE � R � ��t � tsp� (1)

The amplitude of the PSR at time tsp is therefore a dynamic variable
given by the product PSR � Ase � R(tsp), where Ase is a constant
representing the absolute synaptic efficacy corresponding to the max-
imal PSR obtained if all the synaptic resources are released at once.

The model of a facilitating synapse is an extension of the model for
the depressing synapse, with USE being a dynamic variable increasing
at each presynaptic spike and decaying to the baseline level in the
absence of spikes

dUSE

dt
� �

USE

�facil

� U1 � �1 � USE� � ��t � tsp� (2)

where U1 is a constant determining the step increase in USE and �facil

is the relaxation time constant of facilitation.
The experimental range of USE and �rec, obtained by fitting the

model responses to recordings from depressing synapses between
pyramidal cells in slices of rat somatosensory cortex, is 0.1–0.95 and
500–1,500 ms, respectively (Markram 1997). For facilitating syn-
apses connecting pyramidal cells to inhibitory interneurons, experi-

mental ranges of U1, �rec, and �facil are 0.012–0.086, 104–694 ms,
and 550–3,044 ms, respectively (Markram et al. 1998).

Unless otherwise indicated, the typical set of parameters used
throughout is {USE � 0.5, �rec � 800 ms} for depressing synapses and
{U1 � 0.03, �rec � 300 ms, �facil � 1,800 ms} for facilitating
synapses.

PROBABILISTIC MODEL FOR DYNAMIC SYNAPSES. To account for
trial-to-trial fluctuations in synaptic responses, we use a probabilistic
model for dynamic synapses. Many probabilistic models may be used
to describe synaptic transmission (e.g., Larkman et al. 1997; Maass
and Zador 1999; for a detailed comparison of different models see
Matveev and Wang 2000). The model used here is an extension of the
classical quantal model of synaptic transmission (Allen and Stevens
1994; del Castillo and Katz 1954; Korn and Faber 1991; Korn et al.
1984; Stevens 1993), with dynamics of transmission included. The
synaptic connection is composed of N release sites. At each site there
may be, at most, one vesicle available for release, and the release from
each of the sites is independent of the release from all other sites. At
the arrival of a presynaptic spike at time tsp, each site containing a
vesicle will release the vesicle with the same probability, USE. Once
a release occurs, the site can be refilled at any time interval dt with a
probability dt/�rec. These two probabilistic processes (release and
recovery) can be described by a single differential equation, which
determines the probability, Pv, for a vesicle to be available for release
at any time t

dPv

dt
�

�1 � Pv�

�rec

� USE � Pv � ��t � tsp�

Pr�tsp� � USE � Pv (3)

where Pr(tsp) denotes the probability of release for every release site
at the time of a spike, tsp. It is calculated as the product of Pv(tsp) and
the probability of release, given that the site contains a vesicle (USE).

To account for the variability observed in the quantal response
amplitudes of single CNS synapses (Auger and Marty 2000; Bekkers
1994; Jack et al. 1990; Korn and Faber 1991; Larkman et al. 1997;
Redman 1990), we assume that the postsynaptic response to the
release of each vesicle (q) is not a constant value. Rather, it is chosen
from a Gaussian distribution, with a mean � and variance �2, which
was cut off at the tails. The PSR is therefore determined as the number
of vesicles that were released in response to the spike, multiplied by
the corresponding q values from each of the release sites as chosen at
the time of the spike.

In depressing synapses, USE is a constant, whereas in facilitating
synapses USE is a dynamic variable that evolves according to the same
equation as in the corresponding deterministic model (Eq. 2).

It is evident by comparing Eqs. 1 and 3 that the probabilistic model
is based on the deterministic model. In the probabilistic version, the
probability of a vesicle being at a release site (Pv) is analogous to the
fraction of resources available for release (R) in the deterministic
version, and they both evolve according to the same differential
equation. Similarly, the probability for the release of a docked vesicle
in the probabilistic version is analogous to the fraction of available
resources being released per spike in the deterministic version (USE in
both cases). The advantage of using this specific model for probabi-
listic synaptic transmission is that not only is it based on the classical
quantal model of release, but it is also consistent with the determin-
istic model in the sense that the average response of the probabilistic
synapse converges to the response of the deterministic model. In
addition, preliminary experimental results from rat neocortical slices
support the validity of this probabilistic model.

Information theoretic analysis

Two information theoretic measures are utilized in this study (Borst
and Theunissen 1999; Cover and Thomas 1991; Rieke et al. 1997;

FIG. 1. Synaptic transmission is history dependent. Average postsynaptic
potential generated in response to a repeated presynaptic spike pattern (bottom)
at a frequency of 23 Hz, measured experimentally in an interconnected pair of
pyramidal neurons (top) and computed with the model of a depressing synapse
(middle). Model parameters: USE � 0.55 and �rec � 450 ms (see METHODS).
From Tsodyks and Markram (1997).
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Shannon and Weaver 1948). The first measure is the entropy of a
random variable that quantifies the amount of uncertainty one has
about its value. For a discrete random variable X, which can take any
value x from a particular set � with probability p(x), the entropy H(X)
in bits, is calculated as follows

H�X� � ��
x��

p�x� log2 p�x� (4)

Generally, the wider the probability distribution of the possible values
of X, the harder it is to guess the exact value of the variable at a given
instance, and thus the entropy is higher. Relevant random variables for
the present study are the magnitude of the PSR and an ISI-vector
representing the presynaptic spike train.

The second measure is the mutual information, [I(X; Y)], between
a pair of random variables X, Y. It is defined using the conditional
entropy of X given Y, [H(X�Y)]

H�X�Y� � �
y�	

p�y�H�X�Y � y�

� ��
y�	

p�y� �
x��

p�x�Y � y� log2 p�x�Y � y� (5)

where p(x�Y � y) is the conditional probability of X � x given the
value y of Y. If X (e.g., the PSR) is statistically correlated to Y (e.g.,
the preceding ISI), then knowledge of Y reduces the uncertainty about
the value of X. In this case, H(X�Y) will be less than H(X), which we
refer to as the unconditional entropy.

This reduction in uncertainty about a single random variable X, due
to the knowledge of another variable, is quantified by the mutual
information and is given by the difference between the unconditional
and conditional entropies of X

I�X; Y� � H�X� � H�X�Y� (6)

This measure is symmetric: I(X; Y) � I(Y; X), e.g., the information
that a presynaptic spike train has about the postsynaptic response is
equal to the information that the response has about the preceding
spike train.

In situations where X is uniquely determined by Y, knowledge of Y
dictates a single possible value x of X, such that p(X�Y � y) is nonzero
only at a single value x from �. It then follows that the conditional
entropy satisfies H(X�Y) � 0, and therefore

I�X; Y� � H�X� (7)

In general, however, Y is not the only source of variability in the
outcomes of X. Hence, knowing the particular value of Y does not
uniquely determine the value of X. Therefore H(X�Y) is positive and
I(X; Y) � H(X). Analogously, I(X; Y) � H(Y).

The entropy of a continuous random variable (as are the PSR and
the ISIs) is computed, in practice, by dividing the range of X into finite
bins of a chosen precision and evaluating the resulting probability
distribution of the corresponding discrete variable. The computed
entropy will therefore depend on the precise choice of the bin size.
However, if the bin size is set constant for both conditional and
unconditional entropies, then the computed mutual information is
independent of the bin size.

Information analysis of model synapses

We apply the formalism of information theory to phenomenological
models of activity-dependent synapses. In particular, we compute the
mutual information between the PSR (X in Eqs. 5–7) and the set of
preceding presynaptic ISIs (Y). In the deterministic model, which
describes the average behavior of a dynamic synapse, the magnitude
of a PSR is determined uniquely by the history of the presynaptic
spike times. Sufficiently long preceding spike trains determine the
magnitude of the PSR with arbitrary precision. In this case, the

information that PSRs contain about the preceding spike trains (the
ISI vector) equals the unconditional entropy of the PSRs (Eq. 7). This
information can therefore be calculated from the distribution of all
PSRs, P(PSR) (see Eq. 4). The PSR distribution is evaluated from the
histogram of simulated model responses to long presynaptic spike
trains according to Eq. 1. Since the magnitude of a deterministic
synaptic response is a continuous variable, its entropy is strictly
speaking infinite. In other words, a deterministic synapse can transmit
an infinite amount of information about the timing of the preceding
spikes in every PSR. The information becomes finite when the histo-
gram is discretized by choosing a finite bin size, according to the finite
precision with which PSRs can be measured. For subsequent compar-
ison with biologically more relevant stochastic models, we are mostly
interested in the frequency dependence of the obtained information
and not in its absolute values. We therefore chose the bin size
consistently in all simulations as 1% of the maximal response ampli-
tude, i.e., Ase/100. We checked that the qualitative results are not
sensitive to the exact choice of the bin size, as long as it is sufficiently
small.

In the probabilistic model, the information content of PSRs can be
calculated in the following way. Since failure of release from all sites
provides the postsynaptic neuron with no information about presyn-
aptic events, only release of one or more vesicles is considered. Note
that failures do have the potential of transmitting information about
the preceding pattern of spikes, but to use this information the
postsynaptic neuron needs to know that the current presynaptic spike
has nevertheless occurred. In the absence of a mechanism that ensures
this knowledge, responses of zero amplitude cannot be informative.
Therefore the probability for the release of n vesicles (nVes) is
calculated according to a normalized binomial distribution, where
only the values 1, . . . , n, . . . , N (number of release sites) are possible,
and which is determined by Pr � the release probability from each site

p�nVes � n�Pr� � C N
n P �

n�1 � Pr�
�N�n�/CNorm (8)

where C N
n � N!/n!(N � n)! denotes the binomial coefficient, i.e., the

number of combinations of n of N and CNorm is a normalization factor

CNorm � �
n�1

N

C N
n P r

n �1 � Pr�
�N�n� (9)

Each vesicle released causes a variable response, therefore the
probability density for a PSR magnitude is

f�PSR � x�Pr� � �
n�1

N

p�nVes � n�Pr� � G�x, n�, �n�2� (10)

where

G�x, �, �� � � 0 x 
 0, x � 2�

1

CG � �2��2
exp���x���2/2�2� otherwise

(11)

and

CG ��
0

2� 1

�2��2
exp���x���2/2�2� dx (12)

In the simulations we chose �/� to be 0.4. We emphasize that for
a dynamic synapse, Pr changes from spike to spike according to Eq.
3. Equation 10 therefore expresses the conditional probability of
PSRs, given a sufficiently long spike train, since each spike train gives
rise to a particular value of Pr. The corresponding unconditional
probability density is computed by averaging over the results of Eq.
10, for all possible values of Pr
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f�PSR � x� � �
Pr

p�Pr�f �PSR � x�Pr� (13)

The distribution, p(Pr) above is obtained by simulating Eq. 3 for very
long spike trains.

The mutual information between PSRs and the presynaptic spike
trains, I(PSR; ISIs), is then computed as in Eqs. 4–6, where X and Y
are replaced by PSR and Pr, respectively. Due to the probabilistic
release, the information will always be less than the unconditional
entropy of the responses. We may quantify the impact of probabilistic
release on information coding using the information efficacy measure,
which we define as the ratio between the information and the uncon-
ditional entropy of PSRs. While in the deterministic model the infor-
mation efficacy is always unity, it is less than unity for the probabi-
listic model.

R E S U L T S

Coding of information by depressing synapses

Information theoretic analysis was applied to models of
neocortical depressing synapses to compute the information
contained in a PSR about the preceding pattern of presynaptic
spikes (Fig. 1) (Markram et al. 1998; Tsodyks and Markram
1997). Both deterministic and probabilistic models were used.
Comparing these two types of models elucidates the impact of
probabilistic release on the information content of synaptic
responses. In both cases, the presynaptic inputs were Poisson
spike trains, which were shown to closely mimic the spike
activity of neocortical neurons in vivo (Softky and Koch 1993).
The relevance of Poisson spike trains for temporal coding may
be particularly high in light of the fact that their ISI distribution
maximizes the entropy of ISIs for a given firing rate (Rieke et
al. 1997). The interesting issue of how information coding is
affected by deviations from the Poisson statistics (see, for
example, Baddeley et al. 1997) is left for a future study.

DEPENDENCE OF INFORMATION ON THE PRESYNAPTIC FREQUENCY.

The dependence of temporal information encoded by the syn-
apse on the average frequency of the presynaptic spike train is
shown in Fig. 2. The results are presented for the deterministic
model (Fig. 2A) and the probabilistic model (Fig. 2, B and C)
with five release sites. For comparison, the dashed line in Fig.
2A indicates the information contained in a PSR about the
timing of the current spike that triggered this PSR, assuming
that the synaptic delay is randomly distributed between 0 and
3 ms (Markram et al. 1997a). Although this value is the
dominant term in the information content of a PSR, it is of no
relevance to temporal coding of presynaptic spike patterns
since it is not affected by the timing of preceding spikes, which
is the focus of this study.

The main difference between the temporal information con-
tent of PSRs of a deterministic synapse (Fig. 2A) and a prob-
abilistic synapse (Fig. 2B) is in their absolute value of infor-
mation, which is two orders of magnitude larger in the
deterministic synapse, at the chosen histogram bin size. This
difference is expected, as probabilistic synapses with just a few
release sites are far less reliable than the corresponding deter-
ministic synapses. However, despite the difference in absolute
values, the information encoded by both deterministic and
probabilistic synapses about the timing of presynaptic spikes,
peaks at the same frequency (vertical dotted line), which we
denote as the optimal frequency, Fopt. This optimum is ex-
pected because at very low frequencies the responses are
recovered, and therefore there is no information in the magni-
tude of PSRs. At very high frequencies, the responses are all
depressed, and, again, information about the timing of the
presynaptic spikes is lost. Moreover, plotting information ef-
ficacy as a function of the presynaptic firing frequency (Fig.
2C) clearly shows that the probabilistic effect is not uniform
over all frequencies. Rather, the probabilistic component of
transmission causes maximal information reduction at very low

FIG. 2. Temporal information encoded by depressing syn-
apses depends on presynaptic firing rate. A: information con-
tained in postsynaptic responses (PSRs) of a deterministic
depressing synapse about the presynaptic interspike intervals
(ISIs), plotted as a function of the presynaptic firing rate.
Optimal frequency for encoding (in this case 2 Hz) is defined
as the frequency for which temporal information encoding is
maximal. The dashed line indicates the information contained
in a PSR about the timing of the current spike. It is computed
according to the following formula, under the assumption that
synaptic delay is uniformly distributed in the range of 0–3 ms:
I(PSR; tspike) � ln 2 � log2 (0.003 � F), where F is the
presynaptic firing rate. B: as in A, for the probabilistic synaptic
model with 5 release sites. The dotted line (1/F) is inversely
proportional to the firing rate. C: information efficacy of PSRs
of a probabilistic synapse plotted vs. the frequency of input
spike train. D: information rate of a probabilistic synapse
plotted vs. the frequency of input spike train, computed under
the simplifying assumption that the information contained in
consecutive PSRs is independent of one another. Model pa-
rameters: USE � 0.5 and �rec � 800 ms (see METHODS).
Poisson spike trains were used as input in all cases.
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and very high frequencies. The effect is minimal at the optimal
frequency for encoding, such that at this frequency, not only is
the absolute information encoded maximal, but also the infor-
mation efficacy of the synapse is optimal. We therefore con-
clude that, at the optimal frequency, the synaptic dynamics are
used most efficiently for encoding temporal information by
single PSRs.

Another quantity to be considered is the “information rate,”
i.e., the information encoded per time unit, rather than per PSR
(Fig. 2D). Exact calculation of the information rate is non-
trivial, since it must take into account the possible redundancy
in the amplitudes of subsequent PSRs in terms of information
about the previous spikes. The upper bound for the information
rate can be estimated by ignoring this redundancy, as the
product of presynaptic frequency and the information per PSR.
We found that beyond the optimal presynaptic frequency, the
decrease of information gradually approaches the curve in-
versely proportional to the frequency (Fig. 2B). This observa-
tion indicates that the information rate saturates at high fre-
quencies, i.e., that further increase of the presynaptic rate does
not provide more information to the postsynaptic neuron (Fig.
2D). It is interesting to note that the frequency at which
saturation occurs is close to the limiting frequency of the
depressing synapses, as defined by Tsodyks and Markram
(1997). Beyond the limiting frequency, the synapse loses sen-
sitivity to the average firing rate. Both the optimal frequency
defined above and the limiting frequency exhibit the same
dependence on synaptic parameters.

Because each neocortical synapse is characterized by unique
response dynamics (Tsodyks and Markram 1997), different
synapses would be expected to have different optimal frequen-
cies for information encoding. We therefore repeated the anal-
ysis for different combinations of synaptic parameters, all in
the physiological range. The empirical results showed that a
very good approximation for the optimal frequency for tem-
poral information encoding is given by

Fopt �
1

�USE � �rec�
(14)

We conclude that, if one knows the parameters underlying
the average behavior of a depressing synapse, one can predict
the firing rate to which the synapse (both if deterministic or
probabilistic) is best tuned in terms of maximal information
encoding.

For synaptic parameters within the physiological range (see
METHODS), Fopt for depressing pyramidal-pyramidal synapses
ranges between 0.7 and 20 Hz, with the majority of cases
below 5 Hz. This result may be related to the fact that most of
the time neocortical neurons are active at low, spontaneous,
firing rates of a few spikes per second. Only rarely do they
reach higher rates (Abeles 1991).

DEPENDENCE OF TEMPORAL INFORMATION ENCODING ON

SYNAPTIC PARAMETERS. We next considered the case of a
presynaptic spike train with a fixed frequency and studied the
dependence of the encoded information on synaptic parame-
ters. We observed that synapses with different parameter com-
binations differ in their capacity for information encoding at a
given presynaptic firing rate. We therefore studied whether
there exists an optimal combination of synaptic parameters that
maximizes information encoding at a given input frequency.

First we analyzed the dependence of the information on the
time constant of recovery from depression, �rec, for a fixed
value of USE. The plots of the encoded information as a
function of �rec for a fixed frequency F, have a clear peak (Fig.
3A). Thus at any presynaptic average firing rate, there is an
optimal value of �rec (optimal �rec), which maximizes informa-
tion encoding. Moreover, by repeating the analysis for many
different firing frequencies (F) and for many values of USE, we
found that optimal �rec is well approximated by the following
relation, analogous to Eq. 14

�rec �
1

USEF
(15)

In other words, to optimally encode the information about the
presynaptic ISIs, the time constant of recovery from depression
should be tuned in accordance with the frequency of the input
spike train, such that higher firing frequencies require faster
recovery from depression.

The dependence of the optimal value of �rec on USE is
summarized in Fig. 3B for a firing rate of 2 Hz. In agreement
with Eq. 15, there is a clear trade-off between USE and �rec
values, such that the larger the USE, the smaller �rec should be
for optimal encoding. The optimal values for �rec, calculated
for USE ranging from 0.1 to 0.9, are in broad agreement with
experimental data obtained for pyramidal-pyramidal connec-
tions in neocortical slices (160–1,500 ms) (Markram 1997).

Figure 3C depicts the effect of the USE parameter on the

FIG. 3. Temporal information encoded by depressing synapses depends on
synaptic model parameters. A: dependence of encoded information on the time
constant of recovery from depression (�rec). The parameter USE was fixed at
0.5. Optimal �rec is the value for which information is maximal. B: dependence
of the optimal �rec on USE. The optimal time constant for recovery from
depression is inversely related to USE (Eq. 15). C: dependence of encoded
information on USE. The parameter �rec was fixed at 800 ms. Maximal
information is obtained for USE � 1. Results are for the probabilistic model of
a depressing synapse with one release site. In all cases, Poisson spike trains
with an average frequency of 2 Hz were used as input.
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encoded information. The information grows monotonically
with USE, such that the optimal value for USE is always 1, i.e.,
the maximal value it may attain. The same result holds for all
frequencies (not shown). Since the experimental values for USE
are intermediate between 0 and 1, this finding suggests that the
value of USE is not tuned to maximize information encoding
but is determined by some other factor. In contrast, the range
of optimal values of �rec lies within the range found in neo-
cortical slice preparations, suggesting that in neocortical de-
pressing synapses, �rec is tuned for optimizing information
encoding by the synapse.

DEPENDENCE OF TEMPORAL INFORMATION ENCODING ON THE

NUMBER OF RELEASE SITES. Synaptic connections between
pyramidal neurons typically have several contacts (at least 3,
with an average of around 5–6) (Larkman et al. 1997;
Markram et al. 1997b). The results presented above were
obtained for synapses with five release sites. To examine what
bearing the variable number of release sites may have on
information encoding, we studied the dependence of informa-
tion contained in PSRs on the number of release sites in the
probabilistic model. Repeating the calculation described above
for a variable number of release sites, we found the same
qualitative results as presented in Figs. 2 and 3 (not shown).
However, the actual values of information strongly depend on
the number of release sites.

In Fig. 4A, temporal information encoded by a synapse about
the presynaptic ISIs is plotted as a function of the number of
release sites. The information grows steadily with the number
of release sites. This is consistent with the fact that for infi-
nitely many release sites, the model behaves as a deterministic
one, for which the information diverges to infinity (see METH-
ODS). As can be seen in Fig. 4B, not only the absolute values of

information increase with the number of release sites, but also
the information efficacy, i.e., the fraction of the informative
component within the total entropy of the responses (see METH-
ODS). This dependence was found for a wide variety of model
parameters that lie within the physiological range. The advan-
tage of having multiple release sites from an information
theoretic point of view was previously observed in models of
linear synapses (Manwani and Koch 1999; Zador 1998). Our
results suggest that if a synapse has a certain amount of
neurotransmitter at its disposal, then, in terms of information
coding, it is advantageous to divide the neurotransmitter into
more release sites than putting more of it in each synaptic
vesicle. In both cases, the average response would be the same.
However, in the first case, the trial-to-trial fluctuations de-
creases, and information efficacy therefore increases.

HOW MANY SPIKE TIMES ARE REPRESENTED IN A POSTSYNAPTIC

RESPONSE? So far we showed that a single synaptic response
carries information about the timing of preceding presynaptic
spikes. It is clear, however, that a synapse can only “report”
about the timing of a finite number of such spikes. Hence we
wondered how many spike times are represented in a PSR.

To address this question, we calculated the mutual informa-
tion between PSRs and the times of preceding presynaptic
spikes in the input train. In Fig. 5, the information content of
PSRs is plotted against the sequential number of the preceding
presynaptic spike (a larger number in abscissa implies that the
spike occurred further back in time). In the case shown, the
information in the PSR about the two most recent spikes is
more or less the same, but information decreases rapidly for
spikes that occurred further back in time. From the analysis of
different model synapses with parameters in the physiological
range, we found that the part of the curve in which the infor-
mation about preceding spikes is comparable to the informa-
tion about the timing of the most recent spike extends up to
four preceding spikes. This finding suggests that depressing
synapses can encode information about the timing of at most
four preceding spikes (see DISCUSSION).

Coding of information by facilitating synapses

The information analysis was also performed for models of
facilitating synapses. The main results are similar to those

FIG. 4. Temporal information encoded by probabilistic depressing syn-
apses depends on the number of release sites. A: information contained in the
PSR plotted as a function of the number of release sites. The information grows
with the number of release sites. B: information efficacy of the PSR as a
function of the number of release sites. Poisson spike trains with an average
frequency of 2 Hz were used as input.

FIG. 5. The timing of only a few spikes is represented in the PSR. Proba-
bilistic depressing synapse with 5 release sites: mutual information between a
PSR and the timing of a preceding spike, plotted as a function of the sequential
number of the preceding presynaptic spike (larger numbers for spikes that
occurred further back in time).
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found for depressing synapses. As in depressing synapses, in
facilitating synapses each postsynaptic response carries infor-
mation about the timing of preceding spikes. The amount of
information contained in a single response depends on the
synaptic parameters, as well as on the presynaptic firing rate.
For each facilitating synapse there is an optimal input fre-
quency at which the information contained in the synaptic
response is maximal (see Fig. 6A).

For facilitating synapses with parameters in the physiologi-
cal range, the optimal frequency of information coding lies
between 9 and 70 Hz. The optimal frequency, Fopt, of a
facilitating synapse tends to be higher than that of depressing
synapses. An extensive analysis of facilitating synapses with
parameters in the physiological range shows that Fopt is pro-
portional to the expression

1

��U1 � �rec � �facil�
(16)

This expression was previously defined as the peak frequency
of a facilitating synapse, i.e., the frequency at which the steady-
state PSR is maximal (Markram et al. 1998). Thus the optimal
frequency for information coding in a facilitating synapse is
proportional to the frequency at which the synaptic efficacy is
maximal.

We have further observed that, as in the case of depressing
synapses, the information contained in a PSR of a facilitating
synapse is proportional to the number of release sites (Fig. 6B).
Both the information and the information efficacy (not shown)
increase nearly linearly with the number of release sites.

Figure 6C depicts the mutual information between the PSR
of a probabilistic facilitating synapse and the timing of preced-
ing presynaptic spikes, plotted as a function of the sequential
number of the spike in the past. As in the case of depressing
synapses, the information decreases for spikes that have oc-
curred far in the past. However, the main difference between
depressing and facilitating synapses with parameters within the
physiological range is that the region of the curve in which the
computed information is comparable to the information con-
tained about the timing of the most recent spike (or even larger)
is more extended in facilitating synapses. This implies that
while a depressing synapse carries significant information
about the timing of at most four preceding spikes, a facilitating
synapse is capable of representing the timing of at least eight
preceding spikes.

D I S C U S S I O N

The present theoretical study explores the capacity of single
responses of neocortical synapses to encode temporal informa-
tion about the timing of presynaptic spikes. This capacity
results from the short-term activity-dependent changes in the
amplitudes of the postsynaptic response that characterize dif-
ferent types of synaptic connections (Galarreta and Hestrin
1998; Gupta et al. 2000; Hempel et al. 2000; Markram et al.
1998; Reyes et al. 1998; Stevens and Wang 1995; Thomson
and Deuchars 1994). The activity dependence of synaptic
transmission can be captured by phenomenological models
characterized by a small number of parameters, each of which
has a clear functional meaning, such as the probability of
release and time constants of recovery from depression and
facilitation (Abbott et al. 1997; Markram et al. 1998; Tsodyks
and Markram 1997; Varela et al. 1997). The physiological
ranges of these parameters have been identified for several
major types of neocortical synapses in slice preparations
(Gupta et al. 2000; Markram et al. 1998; Tsodyks and Markram
1997). This enables one to quantitatively estimate the informa-
tion content of postsynaptic responses and analyze the depen-
dence of the information on the synaptic parameters and input
conditions. Here we have presented the results for two types of
neocortical connections, depressing synapses between pyrami-
dal neurons and facilitating synapses between pyramidal neu-
rons and interneurons.

One of the main results of the analysis is that, for every
synaptic connection, the information contained in the postsyn-
aptic response is maximal for a particular input frequency,
unique to each synapse. For depressing synapses, this optimal
frequency was found to be surprisingly low, typically below 5
Hz, i.e., at the range of spontaneous activity of in vivo neo-
cortical networks (Abeles 1991). It is usually assumed that the
spontaneous activity of cortical networks does not carry sig-
nificant information, in contrast to the evoked activity charac-
terized by much higher firing rates. Several recent studies
regard this spontaneous activity as a “background” that pro-
vides a “context” for interpreting the evoked input (Bernander
et al. 1991; Ho and Destexhe 2000; Rapp et al. 1992). Our

FIG. 6. Temporal information encoded by facilitating synapses. A: infor-
mation contained in the PSR of a facilitating synapse about the presynaptic
ISIs, plotted as a function of the presynaptic firing rate. A probabilistic synapse
with 5 release sites was modeled. Optimal frequency is obtained at about 20
Hz. B: information contained in the PSR of a probabilistic facilitating synapse
as a function of the number of release sites. Dotted line is for the optimal
frequency of 20 Hz, whereas the continuous line is for input frequency of 2 Hz.
C: the number of preceding spike times represented in the PSR. Mutual
information between a PSR and the timing of a preceding spike, plotted as a
function of the sequential number of the preceding presynaptic spike (larger
numbers for spikes that occurred further back in time). A probabilistic facili-
tating synapse with 15 release sites was simulated. Model parameters: U1 �
0.03, �rec � 300 ms, �facil � 1,800 ms (see METHODS). The average frequency
of the presynaptic spike train was 2 Hz.
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finding that depressing synapses in the neocortex are actually
“tuned” to encode information at the spontaneous rates indi-
cates that old notions of what is “noise” in brain activity may
have to be revised. Namely, that important information pro-
cessing takes place during the spontaneous activity of cortical
networks (Arieli et al. 1996). However, the resolution of this
issue may have to wait for in vivo studies of synaptic trans-
mission. As the optimal frequency for information encoding
via depressing synapses was found to be inversely proportional
to the time constant of recovery from depression, finding
similar time constants in vivo and in vitro would confirm our
suggestion. In contrast, finding significantly shorter time con-
stants in vivo would imply higher optimal frequency and would
thus weaken our conjecture regarding the importance of the
spontaneous activity.

As a complementary issue, we also analyzed the dependence
of the encoded information on synaptic parameters for a fixed
presynaptic frequency. Important differences between the ef-
fects of these parameters emerged. For the USE parameter,
representing the probability of neurotransmitter release, we
found that optimal encoding always occurs at the highest
possible value, i.e., at USE � 1. On the other hand, for the time
constant underlying recovery from depression �rec, intermedi-
ate values were found to maximize the information content.
The range of optimal values for �rec, calculated for low pre-
synaptic frequency, was found to be in broad agreement with
experimental data. These results indicate that the exact value of
the usage parameter for a given synaptic connection is not
tuned to maximize the information coding. Rather, plasticity of
this parameter was found to occur on the basis of temporal
relationship between the activity of pre- and postsynaptic neu-
rons in a Hebbian manner (Markram and Tsodyks 1996;
Markram et al. 1997b; Stevens and Wang 1994). On the other
hand, the recovery time constant may well be tuned to optimize
the information coding in a non-Hebbian manner, according to
the typical frequency of presynaptic neurons. We found an
inverse relationship between the optimal value of recovery
time constant and the usage parameter. This prediction could
be tested experimentally.

Finally, we analyzed the dependence of the information
coding on the number of synaptic release sites. As a general
rule, we found that increasing the number of release sites
always improves the information efficacy of the synapse by
reducing the trial-to-trial fluctuations of the responses. Indeed,
synaptic connections between pyramidal neurons usually have
several contacts, with nonuniform distribution of the number of
contacts that is biased toward higher values (Larkman et al.
1997; Markram et al. 1997a). We therefore suggest that not
only is the dynamic time constant adapted to optimize coding
of temporal information, but even the morphological properties
of synaptic connections may be determined according to prin-
ciple of optimizing the information content of postsynaptic
responses.

Several interesting differences between depressing and fa-
cilitating synapses have emerged from our analysis. In partic-
ular, facilitating synapses are tuned to significantly higher
frequencies, more reminiscent of the evoked activity of pyra-
midal cells. Facilitating synapses were also shown to code
information about longer spike patterns. Mathematically, both
of these properties of facilitating synapses result from the low
values of USE parameter, i.e., low initial probability of release.

The functional significance of these results will have to be
elucidated in future studies. One can speculate that the flow of
temporal information in the neocortex recruits interneurons
only when the activity is driven by sensory stimuli, rather than
during spontaneous activity.

The theoretical analysis presented here complements a pre-
vious study, which analyzed the ability of depressing synapses
to signal the population firing rates of presynaptic neuronal
ensembles (Tsodyks and Markram 1997). In particular, we
have shown that beyond the optimal frequency of depressing
synapses, the instantaneous rate of temporal information grad-
ually saturates. This saturation occurs near the limiting fre-
quency of the synapse, defined as the frequency above which it
cannot transmit information about the presynaptic rates (Tso-
dyks and Markram 1997). The present finding therefore sup-
ports the idea that the functional significance of the limiting
frequency is that it defines the operational range for depressing
synapses. The same is true for facilitating synapses, in which
the optimal frequency given by Eq. 16 is proportional to the
peak frequency of these synapses, at which the average ampli-
tude of PSRs is maximal (Markram et al. 1998).

The ability of dynamic synapses to encode information
about the timing of preceding presynaptic spikes supports the
suggestion that a temporal code is used for information pro-
cessing in the neocortex (Ferster and Spruston 1995;
O’Donovan and Rinzel 1997; Richmond and Optican 1990;
Rieke et al. 1997; Senn et al. 1998; Tovee et al. 1993). This
study focused on the ability of neocortical synapses to encode
temporal information at the level of a single isolated presyn-
aptic spike train. Since neocortical neurons have numerous
synaptic contacts, an important challenge for future work is to
analyze the ability of dynamic synapses to signal temporal
patterns in the presence of many presynaptic neurons imping-
ing on the postsynaptic cell (Abeles 1991; Hopfield 1995).

We thank M. London for helpful comments during this study and A. Cowan
and C. Stricker for providing preliminary experimental data.

This work was supported by the US Office of Naval Research, the Israeli
Science Foundation, and the US–Israel Binational Science Foundation.

REFERENCES

ABBOTT LF, VARELA JA, SEN K, AND NELSON SB. Synaptic depression and
cortical gain control. Science 275: 220–224, 1997.

ABELES M. Corticonics. New York: Cambridge, 1991.
ALLEN C AND STEVENS CF. An evaluation of causes for unreliability of

synaptic transmission. Proc Natl Acad Sci USA 91: 10380–10383, 1994.
ARIELI A, STERKIN A, GRINVALD A, AND AERTSEN A. Dynamics of ongoing

activity: explanation of the large variability in evoked cortical responses.
Science 273: 1868–1871, 1996.

AUGER C AND MARTY A. Quantal currents at single-site central synapses.
J Physiol (Lond) 526: 3–11, 2000.

BADDELEY R, ABBOTT LF, BOOTH MC, SENGPIEL F, FREEMAN T, WAKEMAN

EA, AND ROLLS ET. Responses of neurons in primary and inferior temporal
visual cortices to natural scenes. Proc R Soc Lond B Biol Sci 264: 1775–
1783, 1997.

BEKKERS JM. Quantal analysis of synaptic transmission in the central nervous
system. Curr Opin Neurobiol 4: 360–365, 1994.

BERNANDER O, DOUGLAS RJ, MARTIN KA, AND KOCH C. Synaptic background
activity influences spatiotemporal integration in single pyramidal cells. Proc
Natl Acad Sci 88: 11569–11573, 1991.

BORST A AND THEUNISSEN FE. Information theory and neural coding. Nature
Neurosci 2: 947–957, 1999.

COVER T AND THOMAS J. Elements of Information Theory. New York: Wiley,
1991.

DEL CASTILLO J AND KATZ B. Quantal components of end-plate potential.
J Physiol (Lond) 124: 560–573, 1954.

147TEMPORAL CODING BY NEOCORTICAL SYNAPSES

J Neurophysiol • VOL 87 • JANUARY 2002 • www.jn.org



FERSTER D AND SPRUSTON N. Cracking the neuronal code. Science 270:
756–757, 1995.

GALARRETA M AND HESTRIN S. Frequency-dependent synaptic depression and
the balance of excitation and inhibition in the neocortex. Nature Neurosci 1:
587–594, 1998.

GROSSBERG S. On the production and release of chemical transmitters and
related topics in cellular control. J Theor Biol 22: 325–364, 1969.

GUPTA A, WANG Y, AND MARKRAM H. Organizing principles for a diversity of
GABAergic interneurons and synapses in the neocortex. Science 287: 273–
278, 2000.

HEMPEL CM, HARTMAN KH, WANG X-J, TURRIGIANO GG, AND NELSON SB.
Multiple forms of short-term plasticity at excitatory synapses in rat medial
prefrontal cortex. J Neurophysiol 83: 3031–3041, 2000.

HO N AND DESTEXHE A. Synaptic background activity enhances the respon-
siveness of neocortical pyramidal neurons. J Neurophysiol 84: 1488–1496,
2000.

HOPFIELD JJ. Pattern recognition computation using action potential timing for
stimulus representation. Nature 376: 33–36, 1995.

JACK JJB, KULLMANN DM, LARKMAN AU, MAJOR G, AND STRATFORD K.
Quantal analysis of excitatory synaptic mechanisms in the mammalian
central nervous system. Cold Spring Harbor Symp Quant Biol 55: 57–67,
1990.

KORN H AND FABER DS. Quantal analysis and synaptic efficacy in the cns.
Trends Neurosci 14: 439–445, 1991.

KORN H, FABER DS, BURNOD Y, AND TRILLER A. Regulation of efficacy at
central synapses. J Neurosci 4: 125–130, 1984.

LARKMAN AU, JACK JJ, AND STRATFORD K. Quantal analysis of excitatory
synapses in rat hippocampal CA1 in vitro during low-frequency depression.
J Physiol (Lond) 505: 457–471, 1997.

MAASS W AND ZADOR AM. Dynamic stochastic synapses as computational
units. Neural Comput 11: 903–917, 1999.

MAGELBY KL. Short-term changes in synaptic efficacy. In: Synaptic Function,
edited by Edelman GM, Gall WE, and Cowan W. New York: Wiley, 1987,
chapt. 2, p. 21–56.

MANWANI A AND KOCH C. Detecting and estimating signals in noisy cable
structures. I. Neuronal noise sources. Neural Comput 11: 1797–1830, 1999.

MARKRAM H. A network of tufted layer 5 pyramidal neurons. Cereb Cortex 7:
523–533, 1997.
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