
www.sciencemag.org/content/354/6316/1140/suppl/DC1 
 
 

 

 
 

Supplementary Material for 
 

Selective modulation of cortical state during spatial attention 
 

Tatiana A. Engel,* Nicholas A. Steinmetz, Marc A. Gieselmann, Alexander Thiele,  
Tirin Moore, Kwabena Boahen 

 
*Corresponding author e-mail: tatiana.engel@stanford.edu 

 
Published 2 December 2016, Science 354, 1140 (2016) 

DOI: 10.1126/science.aag1420 
 

This PDF file includes: 
 

Materials and Methods 
Supplementary Text 
Figs. S1 to S13 
Table S1 
References 



Supplementary Materials for:
Selective Modulation of Cortical State During Spatial

Attention

Tatiana A. Engel∗, Nicholas A. Steinmetz∗, Marc A. Gieselmann,
Alexander Thiele, Tirin Moore, and Kwabena Boahen

∗These authors contributed equally to this work
Corresponding author e-mail: tatiana.engel@stanford.edu

Contents
1 Materials and Methods: Behavior and Electrophysiology 2

1.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Behavioral task and visual stimuli . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Neural Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Linear array recordings . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Detection of multi- and single-unit activity spikes . . . . . . . . . . . . 4
1.3.3 Receptive field measurement . . . . . . . . . . . . . . . . . . . . . . . 4

2 Materials and Methods: Data Analysis and Modeling 5
2.1 Auto- and cross-correlation analysis . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Hidden Markov Model analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Fitting the Hidden Markov model . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Cross-validation procedure and variance explained . . . . . . . . . . . 8
2.2.3 The maximal explainable variance . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Firing rate modulation by the On-Off transitions . . . . . . . . . . . . 10
2.2.5 Modulation of On-Off dynamics by attention . . . . . . . . . . . . . . 10
2.2.6 Relationship between the On-Off dynamics and behavioral performance 10

2.3 Analysis of local field potentials . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Supplementary Information 12
3.1 Signature of On-Off transitions in auto- and cross-correlations . . . . . . . . . 12
3.2 Relationship between On-Off transitions and local field potentials . . . . . . . 12

3.2.1 Timing relationship between firing-rate transitions and LFP . . . . . . 12

1



3.2.2 LFP power shifts associated with On-Off transitions . . . . . . . . . . 13
3.3 Cross-validation and variance explained by the HMM . . . . . . . . . . . . . . 13

3.3.1 Variance explained by the HMM . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Selecting the number of latent phases in the HMM . . . . . . . . . . . 15

3.4 Replication of On-Off dynamics across different datasets . . . . . . . . . . . . 16
3.5 Rate-matching control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Modeling On-Off dynamics as a continuously varying latent state . . . . . . . . 17

3.6.1 Gaussian Process Factor Analysis (GPFA) model . . . . . . . . . . . . 17
3.6.2 Correspondence between the On and Off episodes decoded by HMM

and GPFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6.3 Attentional modulation of On-Off dynamics decoded by GPFA . . . . . 19

3.7 Relationship between On-Off transitions and microsaccades . . . . . . . . . . 19
3.8 Relationship of On-Off dynamics to spike-count variability and correlations . . 22

3.8.1 Spike-count statistics in the model of On-Off dynamics . . . . . . . . . 22
3.8.2 On-Off dynamics predict multiplicative gain fluctuations . . . . . . . . 23
3.8.3 On-Off dynamics predict spike-count correlations . . . . . . . . . . . . 25
3.8.4 On-Off dynamics account for attention-related changes in spike-count

correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8.5 Relationship to previous work . . . . . . . . . . . . . . . . . . . . . . 28

1 Materials and Methods: Behavior and Electrophysiology

1.1 Subjects
Experimental procedures have been described previously (14). Two male monkeys (Macaca
mulatta; 8 − 12 kg) were used in these experiments. All experimental procedures were in
accordance with NIH Guide for the Care and Use of Laboratory Animals, the Society for Neu-
roscience Guidelines and Policies, and Stanford University Animal Care and Use Committee.
General surgical procedures have been described previously (40).

1.2 Behavioral task and visual stimuli
Two monkeys were trained on a cued change-detection task with a change-blindness manipu-
lation and an antisaccade response. The monkeys performed difficult orientation change detec-
tions at peripheral locations. The discrimination was made more attentionally demanding by the
simultaneous disappearance and reappearance of all peripheral stimuli (change-blindness). A
central cue indicated which location would contain the change. The monkey was rewarded for
reporting a successful detection with a saccade to the diametrically opposite peripheral location
(antisaccade response) or for withholding a saccade if no stimulus changed.

The sequence of events for most trials was as follows. All time ranges are uniformly dis-
tributed and independently chosen unless otherwise stated. A small white dot (∼ 0.15 dva
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diameter) appeared on the screen, and the monkey initiated a trial by fixating it. Shortly (within
333 ms and 140 ms for monkeys G and B, respectively), four peripheral target stimuli appeared.
After a brief delay of 200 − 500 ms, the attention cue appeared: a white line < 0.5 dva in
length and one pixel (< 0.1 dva) in width, originating at the fixation dot and extending in the
direction of one of the four stimuli (randomly chosen on each trial with equal probability). The
cue indicated with 90% or 93% validity which of the four stimuli, if any, would change on each
trial. After a postcue period of 600 − 2, 300 ms with the display static as described, the four
peripheral stimuli synchronously disappeared for a brief (< 270 ms) interval (“blank period”)
and then reappeared. Upon reappearance, one of the four stimuli changed its orientation (i.e.
rotated in place) on 50% of trials. On these change trials, the monkey could earn a reward by
executing a saccadic eye movement within 800 ms to the stimulus opposite the changed stimu-
lus. On the other 50% of trials, all four stimuli appeared at identical orientations to those they
had before disappearing. In this case, the monkey was rewarded for maintaining fixation on
the central dot for 800 ms. The trial was terminated without reward if, at any time prior to the
stimulus reappearance, the eye position left a small square box (∼ 1.5 dva width) around the
fixation dot.

The target stimuli were static Gabor patches: oriented black and white gratings in a circular
Gaussian aperture. For monkey G, the gratings were square wave; for monkey B, they were
sine wave modulated. Both types elicited robust responses from the neurons in this study.
In both monkeys, the gratings were at maximal contrast for the monitor. The dimensions of
the gratings varied somewhat from session to session but were typically ∼ 4 dva in diameter
and approximately one cycle/dva in spatial frequency. The location of the gratings also varied
depending on the receptive field locations of the neurons being recorded, but the centers were
always between 5 and 8 dva eccentricity. All four gratings had equal eccentricity and were
spaced evenly at 90◦ intervals around a circle. The screen background was dark gray for monkey
G and middle gray for monkey B, but for neither monkey were the mean luminances of the
gratings matched to the background color.

The orientation of the grating took one of 8 possible values, evenly spaced from 0◦ to 180◦.
The grating orientations were chosen independently for each of the four stimuli and for each
trial. The difficulty of the task was varied by the amount of grating rotation: 45◦, 67◦, or 90◦.
Trials with these different rotation magnitudes were interleaved randomly. The rotation was
clockwise or counterclockwise with equal probability, independently chosen for each trial.

Visual stimuli were displayed on a monitor at 120 Hz and 1, 680 × 1, 050 resolution (17.8
pixels/degree). The monitor was positioned 28.5 cm from the monkeys’ eyes. Presentation of
stimuli was controlled by Cortex software (http://dally.nimh.nih.gov). Eye position was moni-
tored in some sessions for monkey G with a scleral search coil. In the remaining sessions for
monkey G as well as all sessions for monkey B, eye position was monitored with an EyeLink
1000 video eye-tracking system. Microsaccades were defined as eye movements that exceeded
0.1 degrees amplitude and had maximum velocity > 10 degrees/second for > 10 ms (41).
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1.3 Neural Recordings
1.3.1 Linear array recordings

Recordings were made with 16-channel U-Probes. These electrodes are cylindrical in shape
(constant diameter of 185 µm) and have a row of 16 circular platinum/iridium electrical con-
tacts (15 µm diameter) with 150 µm center-to-center spacing. The total length of the array is
2.25 mm. Data were amplified and recorded using the Omniplex system. Wide-band data, fil-
tered only in hardware at 0.5 Hz high pass and 8 kHz low pass, were recorded to disk at 40 kHz.
Spikes were detected from this signal and sorted as described in detail previously (14).

Recordings were targeted with MRI (42) in order to be as perpendicular to V4 cortical
layers as possible so as to maximize the overlap of RFs of recorded neurons (fig. S1). In this
way, the single grating stimulus presented in the lower-left visual field during the task could
be positioned to drive all recorded V4 neurons. MRI images were collected with a 3T scanner
and were T1-weighted. The position of the recording chamber was visualized by filling it with
copper sulfate, a contrast agent (42). Area V4 was identified as the prelunate gyrus. We visually
identified both the surface of V4 as well as the border of V4 grey matter with the white matter
below, and computed vectors normal to both surfaces. These approach vectors were followed
by the electrodes using a custom tiltable microdrive.

1.3.2 Detection of multi- and single-unit activity spikes

Multi- and single-unit activity (MUA and SUA) detection procedures have been described in
detail previously (14). Briefly, the raw 40 kHz-sampled voltage trace was match-filtered (i.e.,
convolved with a spike-shaped filter (43)) and peaks were detected. Then, a moving-threshold
algorithm was employed with a very high threshold to detect the largest peaks and to exclude
any small spikes that occurred within the exclusion window around these largest peaks. Next,
progressively lower thresholds were used until approximately 100 Hz of spiking activity was
detected on each channel. Out of 736 total recorded channels in the 46 sessions, we were able
to isolate 285 single neurons. Multi-unit activity exhibited response dynamics very similar to
isolated single neurons: e.g., in On/Off firing rate modulation (fig. S4C,F), and auto- and cross-
correlations (fig. S2).

1.3.3 Receptive field measurement

RFs were measured by recording spiking responses to briefly flashed stimuli. The stimuli
were 3 × 3 dva squares on an evenly spaced 6 × 6 grid, each flashed for 200 ms with a ran-
dom length 200 − 300 ms blank screen interval between flashes. The grid coordinates were
−15,−12,−9,−6,−3 and 0 dva relative to the fixation point in both horizontal and vertical di-
mensions. The grid covered the lower left visual field with a square 15 dva on each side. Spikes
were counted for each stimulus presentation in the window 0 to 200 ms relative to stimulus
onset, and were averaged across all presentations of each stimulus. To compute receptive field
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contours and centers, the minimum response was subtracted from the map, then the map was
upsampled by cubic interpolation from a grid with 3 dva spacing to one with 0.1 dva spacing.
The RF center was the location of the peak of the upsampled map, and the visualization contour
was the contour at 75% peak height.

2 Materials and Methods: Data Analysis and Modeling
Our dataset consisted of a total of 46 recording sessions (25 in monkey G and 21 in monkey B)
during the attention task, and 5 recording sessions in monkey G during the fixation task. All
analyses were performed using a custom code written in Matlab. Code is available upon request
via email.

2.1 Auto- and cross-correlation analysis
In order to measure the extent of the On-Off transitions across the whole dataset, we com-
puted auto- and cross-correlations of spiking activity for all units and unit pairs, respectively.
Correlations were computed using a jitter correction method, which corrects for slow temporal
correlations and for stimulus-locked correlations (44, 45). The jitter-corrected correlations are
computed by subtracting the expected value of correlations produced from a resampled version
of original spike trains, with spike-times randomly shuffled (jittered) within a specified tempo-
ral window (the jitter window). The correction term is the average over all possible resamples
of the original spike trains (the expected value), and is subtracted from the raw correlation.

Empirical correlations are computed using small discrete time bins ∆t, and spikes are jit-
tered within larger jitter bins T . The jittering technique preserves two marginals: the total spike
count in each time bin ∆t summed across all trials (the peristimulus time histogram, PSTH),
and the spike count within each jitter bin T on each trial (the instantaneous firing rate computed
in bins T ). For each spike on each trial, a new spike is chosen randomly from the set of all spikes
within the same jitter bin on all of the trials. Jitter correction removes correlations on timescales
greater than the jitter window T . Because it preserves the PSTH shape, jitter correction also
removes any correlations due to stimulus-locked firing rate modulation.

To assess the statistical significance of empirical correlations in each time bin ∆t, the mea-
sured correlation value needs to be compared to the distribution of correlations produced by
all possible resamples. For sufficiently large numbers of spikes and experimental trials, the re-
sampled distribution of correlations in each time bin ∆t is well approximated by a Gaussian.
Therefore, we derived analytical formulas for the mean and variance of the resampled distri-
bution, and transformed jitter-corrected correlations into standard z-scores, normalizing them
by the standard deviation of the resampled distribution. Accordingly, in each time bin the z-
scored correlation represents the deviation of the correlation from the mean of the resampled
distribution, measured in units of its standard deviation.

We computed auto- and cross-correlations for stimulus-driven activity during the sustained

5



response to the grating stimuli (400 to 800 ms window after the attention cue onset) and for
spontaneous activity during the initial fixation period of the attention task (−333 to 30 ms
window in monkey G, and −140 to 30 ms window in monkey B relative to the visual stimulus
onset; these two monkeys were required to fixate for different durations prior to the stimulus
onset). Activity was analyzed on successfully completed trials on which no other behavioral
event happened during the specified time window. Units were only included if their average
firing rate during the specified time window was greater than 5 Hz. Correlations were computed
in ∆t = 1 ms bins, using jitter windows of T = 400 ms and T = 170 ms for stimulus-driven
and spontaneous activity, respectively. Only cross-correlations on channels at least one channel
apart (300 µm) were included and cross-correlations on adjacent channels were not included in
the analysis, to eliminate the possibility that spikes from the same neuron could be registered
on both channels. Population averages were expressed as standard z-scores by normalizing the
sum of auto- and cross-correlations by the square root of the number of units and unit-pairs,
respectively.

We also computed auto-correlations for a separate dataset from ref. (46), where activity of
212 single neurons was recorded in area V4 with conventional sharp electrodes in two mon-
keys under similar behavioral conditions (fig. S2C). All details of behavioral task and recording
techniques were published previously (46). In brief, two monkeys performed a visually guided,
delayed saccade task which was initiated by fixation of the central spot. Immediately following
fixation, an oriented bar stimulus appeared in the RF of the neuron under study and remained
there until the end of the trial. The monkeys maintained fixation for a variable delay (0.5− 1 s)
and, when the fixation spot was extinguished, performed a saccade to one of 3 possible loca-
tions. Spiking activity was analyzed within the −400 to 0 ms window relative to the disap-
pearance of the fixation spot. Neurons were only included in the analysis if their average firing
rate during this window was greater than 5 Hz (n = 165). Auto-correlations were computed in
∆t = 1 ms bins, using a jitter window of T = 400 ms.

2.2 Hidden Markov Model analysis
We hypothesized that firing rates in our recordings switched randomly between the On and
Off phases. However, these On-Off firing rate dynamics are not observed directly, but only
through spikes emitted stochastically with the corresponding instantaneous firing rates. This
random point process adds another layer of stochasticity: the underlying firing rate must be
inferred from the measured spike counts. The spike-count fluctuates from time-bin to time-bin
even when the underlying rate is constant. We employed the Hidden Markov Model (HMM) to
segment spiking data into the On and Off episodes in a statistically principled way.

The HMM (47, 48) was fitted to the stimulus-driven MUA on 16 channels in the attention
task within the window, which started 400 ms after the attention cue onset and ended at the
end of the post-attention-cue period (i.e. start of the blank period, see Fig. 1D). The duration
of this time-window ranged from 200 to 1, 900 ms across trials. These data were analyzed
separately for 32 conditions: 4 behavioral conditions—covert attention, overt attention and 2
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control conditions—times 8 stimulus orientations. During each recording session, monkeys
performed 1500 trials on average, which amounts to 46 trials per condition on average. This
number was sufficient for a good estimate of the model parameters, which is evident from
tight confidence intervals on the model parameters obtained by bootstrapping (see Fig. 2B,E
and supplementary methods 2.2.1). The summary statistics for each unit or recording were
obtained by averaging across these conditions. We also fitted the HMM to the spontaneous
activity during the initial fixation period of the attention task within the time window starting
immediately following fixation (333 ms and 140 ms prior to the stimulus onset in monkeys G
and B, respectively) and ending 30 ms after the stimulus onset; and during the fixation task
within the 0 to 3, 000 ms time window following fixation (fig. S4).

2.2.1 Fitting the Hidden Markov model

The HMM assumes that MUA on 16 simultaneously recorded channels is influenced by a com-
mon binary-valued latent variable s, switching between the Off (s = 0) and On (s = 1) phases.
Dynamics of the latent variable are modeled as a first-order Markov process, meaning that at
each time step t, the probabilities of transitioning between phases depend only on the value of
s at time t: P (st+1|st, . . . , s0) = P (st+1|st). Dynamics of the latent variable evolve in discrete
time steps. Accordingly, MUA was converted into spike-counts using 10 ms bins, such that njt
is the spike-count recorded on channel j in a 10 ms bin following time t.

The latent variable s cannot be observed directly, but only through spikes. The HMM as-
sumes that at each phase—On and Off—spikes on each channel are generated according to
Poisson point-processes, whose mean firing rates depend on the current phase as defined by
the emission matrix Λ, which specifies λsj , the expected spike-count of channel j in phase s
within a time bin, i.e. the rate of a Poisson process. Particularly, the conditional probability of
observing n spikes on channel j while in a phase s is given by

P (n|s) =
(λsj)

n

n!
e−λ

s
j . (1)

Thus, the parameters of the HMM are the transition matrix P (P11 = poff = P (st+1 = 0|st = 0),
P22 = pon = P (st+1 = 1|st = 1), P12 = 1−poff, P21 = 1−pon); the emission matrix Λ, and the
vector of probabilities π0 governing the initial value of the latent variable s0 (π0

i ≡ P (s0 = i)).
The HMM was fitted with the Expectation Maximization (EM) algorithm (47,48). To deter-

mine the model’s convergence, at each EM iteration we monitored relative changes (|new—original|/|
original|) in the model’s log-likelihood and in the transition and emission matrices. The opti-
mization was terminated when the relative changes dropped below specified criteria: 10−5 for
the log-likelihood, and 10−3 for the transition and emission matrices.

To avoid local optima, the EM-optimization was repeated for ten random parameter ini-
tializations, and the parameter set yielding the maximal likelihood was chosen. The initial
parameter values for vector π0 and for each row of the transition matrix P were sampled from
a Dirichlet distribution, and the elements of the emission matrix were initialized from a uniform
distribution on [0, 2〈njt〉], where 〈njt〉 is the mean spike-count of channel j.
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The fitted HMM is not identifiable: swapping the labels s = 0 and s = 1 would result in
exactly the same model. Therefore, to consistently label the inferred latent states as On and Off
phases, we computed the average firing rate across all channels for the two latent phases, and
labeled the phase with higher average firing rate as the On-phase (s = 1), and the other phase
as the Off-phase (s = 0).

To obtain confidence bounds for the estimated HMM parameters in each condition, ten
bootstrap samples were generated by sampling trials randomly with replacement from the set
of all trials available for that condition. For each bootstrap sample, the HMM was refitted, and
the confidence bounds were estimated as 5% and 95% percentile of the bootstrapped parameter
values.

Once the parameters of the HMM were estimated, the most likely latent sequence of On
and Off episodes was decoded on a trial-by-trial basis using the Viterbi algorithm. To verify
the validity of Markovian assumption, we tested whether the sequence of decoded On and Off
episodes exhibited history effects. For each condition, we computed Pearson correlation coef-
ficients between the durations of consecutive Off and On episodes, and of consecutive On and
Off episodes, and then averaged these correlations across conditions for each recording session.
The average correlations were not significantly different from zero: mean Off-On correlation
r = 0.01, p = 0.74; mean On-Off correlation r = −0.02, p = 0.15 (Wilcoxon signed rank test).
Thus the Markovian assumption was confirmed in the data.

To fit the HMM, we used the bin size ∆t = 10 ms. The bin size can neither be too large nor
too small for important reasons. If the bin size is too large (larger than a typical transition time),
the spike count in a single bin would be the average over several On and Off episodes, resulting
in a poor fit. On the other hand, if the bin size is too small (e.g., 1 ms), then the On or Off
phase become harder to distinguish because the difference between the mean spike count in the
On and Off phases decreases linearly with the bin size while the standard deviation decreases
as the square root of the bin size (assuming Poisson statistics). We verified that 10 ms bin size
provides a reliable fit and also a good temporal resolution. To this end, we repeated the fitting
procedure multiple times with random initial conditions for the EM-algorithm, and observed
that estimated transition times were unchanged between different repetitions of the fit.

2.2.2 Cross-validation procedure and variance explained

The quality of the HMM fit was assessed in a two-fold cross-validation procedure (fig. S4).
To this end, the HMM parameters were estimated on a random half of trials (training trials).
These estimated parameters were then used to decode the most likely sequence of the On and
Off episodes on the remaining half of the trials not used for fitting the model (testing trials)
and then to compute the cross-validation score. The procedure was repeated with training and
testing trials swapped. The scores were averaged over the two cross-validation folds.

For MUA on each channel j, the fraction of variance explained by the HMM (R2) was
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computed as

R2 = 1− Varres[nj]

Vartot[nj]
= 1−

∑N
t=1(n

j
t − λstj )2∑N

t=1(n
j
t − 〈n

j
t〉)2

. (2)

Here Vartot[nj] = 1
N

∑N
t=1(n

j
t − 〈n

j
t〉)2 is the total variance of the spike-count data, Varres[nj] =

1
N

∑N
t=1(n

j
t − λstj )2 is the residual variance not accounted for by the HMM, and N is the total

number of time bins.
The cross-validation procedure for SUA was slightly modified, because the HMM was fitted

to the MUA only. Accordingly, SU firing rates in the On and Off phases were not the model
parameters and had to be estimated separately. Specifically, the most likely latent sequence of
On and Off episodes was decoded from the MUA on training trials using the HMM parameters
estimated on training trials. Then the SU firing rates during the On and Off phases were esti-
mated from training trials as the mean firing rates during these decoded On and Off episodes,
respectively. Finally, the estimated On and Off firing rates of SUA were used in equation 2
in place of λsj to compute R2 on test trials. In this analysis, we only included SUs, whose
trial-average firing rate during the analyzed time window was greater than 1 Hz.

We also computed R2 across timescales (fig. S4B,E). To this end, spike-counts of MUA and
SUA were evaluated for 10 different bin-sizes (integration times) ranging from 50 to 500 ms in
50 ms steps. R2 was computed following the same procedures, but the predicted spike-count in
equation 2 was the average of the firing rates predicted by the HMM within each integration-
time bin.

2.2.3 The maximal explainable variance

In order to interpret results of the cross-validation analysis, we derived an analytical expression
for the maximal explainable variance R2

max given that the HMM assumptions hold true. This
calculation assumes that spikes are generated by a Poisson process with the mean firing rate
alternating between two levels corresponding to the On and Off phases, and that the latent
sequence of the On and Off episodes and the firing rates in each phase are known precisely (no
decoding error).

Intuitively, all variance due to firing rate fluctuations is eliminated in this idealized scenario
by the precise knowledge of the mean firing rate in each time bin. Therefore, the residual
variance of spike-count Varres[n] is just the variance of the Poisson point-process, which is
equal to its mean E[n]. Thus equation 2 transforms into

R2
max = 1− E[n]

Vartot[n]
= 1− 1

FF
, (3)

where the Fano factor (FF) is a standard measure of the firing-rate variability, defined as the
variance over the mean of the spike-count. More formally, if λon and λoff are the mean firing
rates during the On and Off phases, N is the number of time steps (i.e. 10 ms bins) within the
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integration time, and n̄ is the number of time steps spent in the On phase on average, then the
residual variance can be calculated as

Varres[n] = n̄〈(n− λon)2〉on + (N − n̄)〈(n− λoff)2〉off = n̄λon + (N − n̄)λoff = E[n], (4)

where we again used the fact that the variance of a Poisson process is equal to its mean. Equa-
tion 3 follows immediately.

In fig. S4A,D, the maximal explainable variance curve simply depicts equation 3. In fig. S4B,E,
in order to compute the average maximal explainable variance curves, we first computed R2

max
for each SUA and MUA using their FF evaluated using the specified integration-time, and then
averaged across the population.

2.2.4 Firing rate modulation by the On-Off transitions

We tested whether firing rates of SUA and MUA were significantly different between the On and
Off phases. First, the most likely sequence of On and Off phases was decoded using the HMM
fitted on all trials. Then, for each decoded On and Off episode, the firing rate was calculated
as the spike-count during that episode divided by its duration. The resulting distributions of
firing rates across all episodes were compared with Wilcoxon sign-rank test for each behavioral
condition. If significance rate across 32 behavioral conditions was higher than chance at 0.05
significance level (i.e. if firing rates were significantly different in 2 or more conditions), then
the unit firing rate was declared to be significantly modulated by On-Off transitions.

2.2.5 Modulation of On-Off dynamics by attention

SUA and MUA were segmented into the On and Off episodes using the HMM fitted on all trials.
For each unit, the average firing rates during the On and Off episodes were computed, as well as
the average durations of On and Off episodes. For each behavioral condition, the results were
averaged across 8 stimulus orientations, and for the control condition they were also averaged
across two directions of the attention cue.

2.2.6 Relationship between the On-Off dynamics and behavioral performance

To determine how the On-Off dynamics in V4 population activity are related to animals’ behav-
ioral performance on a trial-by-trial basis, we fitted the HMM to the 16-channel MUA during the
blank period of attention task (lasting from the initial-stimulus offset until 30 ms after the test-
stimulus onset, see Fig. 1D) using the same procedures as described in supplementary methods
section 2.2.1. For each recording, the HMM was fitted separately for each of 8 stimulus orien-
tations and 4 attention conditions, including all (correct and error) trials. All trials were then
divided into two groups—On-phase and Off-phase trials—according to the decoded population
state at the last time bin (i.e. 30 ms after the changed stimuli onset). The probability to detect
an orientation change was computed as a proportion of change trials with the correct antisac-
cade response, separately for On-phase and Off-phase trials and separately for covert attention
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and control conditions. We then computed the difference in the detection probability between
the On-phase and Off-phase trials and tested whether this difference was significantly different
from zero across recording sessions (Wilcoxon signed rank test).

To investigate how the On-Off dynamics are related to behavioral performance across time,
we computed the detection probability separately for trials that were in the On phase and in
the Off phase at each time bin for the whole duration of the blank period in the covert attention
condition. To rule out any possible effects of stimulus-offset transients on our results, only trials
with the blank-period duration of at least 190 ms were included in this analysis. To test whether
the detection probability was significantly different between the On-phase and Off-phase trials
across all times, we employed a non-parametric permutation approach that controls for mul-
tiple comparisons across all time bins (49). First, we calculated t-values for the difference in
detection probability between the On-phase and Off-phase trials across recordings, separately
for all time bins (non-randomized t-values). Next, the following permutation procedure was
repeated 10,000 times: for each recording, the On-phase and Off-phase trials were exchanged
(i.e. relabeled) with probability 0.5 or left unchanged otherwise. Subsequently, paired t-tests
were performed across recordings between relabeled data for all time bins. The maximal and
the minimal t-values across all time bins were saved, resulting in 10,000 maximal and 10,000
minimal t-values, and the 97.5 and 2.5 percentiles were determined for these two empirical
distributions, respectively. For each time bin, the non-randomized t-value was considered sig-
nificant if it was larger than 97.5 percentile of maximal t-values or less than 2.5 percentile of
minimal t-values. This procedure corresponds to a two-sided test with a global false positive
rate of 0.05 and corrects for the multiple comparisons across the whole time interval.

2.3 Analysis of local field potentials
The local field potential (LFP) was defined as the continuous voltage signal filtered in hardware
with a high-pass filter at 0.5 Hz, then filtered in software with a 4-pole Bessel low-pass filter at
200 Hz and second-order notch filter at 60 Hz, and finally downsampled at 1 kHz. Ten out of 31
recording sessions with On-Off transitions had to be excluded from the LFP analyses due to the
presence of low frequency artifacts, likely resulting from amplifier saturation. Current source
density (CSD) was calculated using the discrete double spatial derivative (50) with “Vaknin”
electrodes added to yield the same number of CSD channels as LFP channels (51).

LFP power during the On and Off phases was computed for On and Off episodes of at
least 250 ms duration using a multitaper method with three tapers and a spectral bandwidth of
5 Hz (52). Average LFP and CSD aligned to the On-to-Off and Off-to-On transitions included
individual traces only for as long as the On and Off episodes on either side of the transition per-
sisted, such that transition-aligned averages included fewer episodes for greater times relative
to the transition time. Latency of transitions in firing-rates and CSD was determined as the first
time when the average traces aligned to On-to-Off and Off-to-On transitions switched (i.e. the
sign of their difference changed). The latency of transitions in firing-rates was averaged across
all channels within each recording. Because the sign of CSD signal changes across cortical
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depth (sources/sinks), only one CSD channel with a large amplitude was selected per recording
for latency calculation.

3 Supplementary Information

3.1 Signature of On-Off transitions in auto- and cross-correlations
In order to measure the extent to which the On-Off transitions permeated cortical dynam-
ics, we computed auto- and cross-correlations of spiking activity across all datasets (supple-
mentary methods 2.1). Auto- and cross-correlations were computed using a jitter-correction
method (44,45) that eliminates stimulus-locked correlations and slow firing-rate correlations on
timescales longer than a specified time window (400 ms in figs. S2A,B,E and S7B and 170 ms
in fig. S2C,D; see supplementary methods 2.1). At each time lag, the correlation value was
expressed as a z-score relative to the distribution of correlations expected by chance.

The On-Off transitions observed during the attention task manifested in a triphasic shape in
the spike auto- and cross-correlations of MUA (fig. S2A). A typical auto-correlation of multi-
unit activity (MUA) showed a highly significant central peak flanked by two significant negative
lobes, indicating that spikes on individual channels arrived in temporal clusters separated by
intervals of low spiking activity. A typical cross-correlation of MUA showed a similar triphasic
shape, indicating that periods of excessive spiking and quiescence were nearly synchronous
even on distant channels. Auto- and cross-correlations of isolated single-unit activity (SUA)
exhibited the same temporal clustering (fig. S2B, lower z-scores are at least in part due to
lower firing rates of SUs), suggesting that SU firing was also modulated by On-Off transitions.
Similar to the stimulus-driven activity, the On-Off transitions in the spontaneous SUA and MUA
during the fixation period also exhibited a triphasic shape in the auto- and cross-correlations
(fig. S2C,D). Thus triphasic shape of spike auto- and cross-correlations suggests that On-Off
transitions were prevalent across the whole dataset.

3.2 Relationship between On-Off transitions and local field potentials
3.2.1 Timing relationship between firing-rate transitions and LFP

We investigated the relationship between the On-Off firing-rate transitions and local field po-
tentials (LFPs). To this end, we computed the average LFPs aligned to the times of On-to-Off
and Off-to-On transitions (fig. S3A,C). The transition-aligned LFPs showed large deflections
around the times of transitions. To confirm that these LFP deflections reflected local activity, we
also computed the current source density (CSD). The transition-aligned CSD exhibited a char-
acteristic pattern of sources and sinks alternating through the cortical depth, which switched
polarity around the times of On-Off transitions (fig. S3B), thus confirming that the LFP de-
flections indeed reflected local activity. In summary, the low frequency LFP/CSD fluctuations
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were strongly phase-locked to the On-Off transitions, consistent with the previous reports that
low-frequency LFP is coupled to spiking activity, particularly in the synchronized state (11).

This phase-locking relationship between the On-Off transitions and LFP raises the ques-
tion of whether changes in the On-Off spiking dynamics observed during attention could be
a consequence of the changes in the low-frequency LFP power during attention (14, 21). The
conventional interpretation—that the LFP represents primarily synaptic currents—leaves open
the question of whether these synaptic currents arise from distant sources, and therefore consti-
tute inputs that may drive local spiking activity, or whether they arise from local sources, and
thus are a consequence of the local spiking that we measured. In addition, the conventional
interpretation remains in question (e.g., the recent suggestion that LFP is driven in majority by
active dendritic currents (53)), and the exact origin of the LFP signal remains an area of active
research.

Nonetheless, we examined whether transitions in spiking activity lead or lag the phase-
locked LFP fluctuations. To quantify the timing relationship between the On-Off firing-rate
transitions and CSD, we computed the latency to transition for both signals. The latency was de-
fined as the time from the moment of transition (as determined by the HMM) until the time when
the average activity aligned to the On-to-Off transitions crossed the average activity aligned to
the Off-to-On transitions. The CSD signal did not lead the firing-rate signal for any recording,
and on average lagged the firing-rate signal by 10.8 ms (p < 10−4, Wilcoxon signed rank test)
across recordings. This result supports the conclusion that—assuming the conventional inter-
pretation of the LFP is correct—the spikes we measured were the dominant source of synaptic
input reflected in LFPs. If this is indeed the case, the changes in duration of On and Off episodes
we observed explain the changes in LFP power with attention, rather than vice versa.

3.2.2 LFP power shifts associated with On-Off transitions

We examined whether LFP power-spectra were different between the On and Off phases. We
computed LFP power-spectra separately during the On and Off episodes, and found that gamma
power (40− 80 Hz) was enhanced and low frequency power (0− 10 Hz) was suppressed in the
On phase relative to the Off phase (fig. S3D,E). This observation links our finding that On-
episode durations increase during attention with the earlier findings that the low-frequency LFP
power is suppressed and gamma-range LFP power is enhanced during attention, which has been
replicated in our dataset (14) and those of others (21).

3.3 Cross-validation and variance explained by the HMM
3.3.1 Variance explained by the HMM

We quantified the amount of spiking variability captured by the HMM in a cross-validation
procedure by computing the fraction of variance explained (R2) on a separate subset of data not
used for fitting the model (fig. S4, supplementary methods 2.2.2). To interpret the results of the
cross-validation analysis, we also computed the maximal explainable variance R2

max, given that
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the HMM assumptions hold true (i.e. spikes are produced by switching between two Poisson
processes with different mean rates). Since Poisson point-processes represent an irreducible
source of variability, the HMM accounts only for variability arising from the difference in their
mean rates. Accordingly, we took advantage of a simple relationship betweenR2

max and the Fano
factor (FF), a measure of firing-rate variability (i.e. the variance divided by the mean spike-
count in a specified time interval). Namely, R2

max = 1−1/FF (see supplementary methods 2.2.3
for derivation). Note that if spikes on a channel are from a single Poisson process (i.e. FF = 1),
then R2

max equals zero for that channel even if its mean firing rate is estimated very accurately
by the HMM. The actual variance explained can deviate from R2

max if the model assumptions
are not perfectly met in the data as well as due to inaccuracies in estimating model parameters
and in decoding the On and Off episodes from finite data.

The HMM performed strikingly well: the variance explained approached R2
max for many

multi-units (fig. S4A). We computed the variance explained for spike-counts in time-windows
of different lengths (fig. S4B). On short timescales, the variance explained approaches zero,
because the number of spikes falling in a short window becomes small (0 or 1 in the limit),
hence, any spiking process becomes indistinguishable from a Poisson process. On the other
hand, the variance explained also approaches zero on timescales exceeding the characteristic
timescale of On-Off transitions, because, over a very long time-window, the On-Off rate fluctu-
ations average out, hence, the expected number of spikes is determined just by the overall mean
firing rate. Accordingly, the variance explained exhibits a maximum at the time corresponding
to the characteristic timescale of On-Off transitions, which was approximately 200 ms in our
data (fig. S4B). On average, the HMM captured about half of the maximal explainable variance.

We also computed the variance explained for isolated single-units. Similar to the result
for MUA, the variance explained approached R2

max for many SUs (fig. S4A). On average, the
variance explained was lower for SUA than for MUA. This trend was partially due to lower FF
values of SUA (fig. S4A) and partially due to SUA variability within each phase being different
from Poisson (i.e. SUA during On and Off phases deviated more strongly from a Poisson
process). For a few single units that spiked more regularly than a Poisson process in the On
and Off phases, the variance explained exceeded R2

max. For a small number of single units the
variance explained was negative, indicating that these units did not follow the population On-
Off dynamics. This finding is consistent with the observation that cortical neurons differ in their
coupling to the overall population firing, ranging from strongly coupled “choristers” to weakly
coupled “soloists” (54). Overall, the HMM with a binary-valued latent variable provided an
excellent description of the population spiking activity, accounting on average for nearly half of
the maximal explainable variance.

To quantify the extent to which spiking of individual units was modulated by On-Off tran-
sitions, we computed the On-Off firing rate modulation index MIon-off = [ron − roff]/[ron + roff],
where ron and roff are the average firing rates during the On and Off phases, respectively. This
modulation index varies from −1 to 1, where positive values indicate higher firing rate during
the On phase, negative values indicate higher firing rate during the Off phase, and MIon-off = 0
indicates that firing rate was not modulated by the On-Off transitions. Firing rates during the
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On and Off phases were significantly different (Wilcoxon signed rank test, p < 0.05) in all
MUs and in the overwhelming majority of SUs (91.1%), and MIon-off was positive in nearly all
MUs (99.6%) and in the majority of SUs (90.9%, fig. S4C). For several SUs, the MIon-off value
approached 1, indicating that these units spiked exclusively during the On episodes and almost
never spiked during the Off episodes. Very similar results were obtained for spontaneous ac-
tivity during the fixation period of the attention task (fig. S4D-F). In summary, our analyses
demonstrate that spiking of individual neurons throughout the cortical depth is strongly modu-
lated by the On-Off transitions during spontaneous and stimulus-driven activity.

3.3.2 Selecting the number of latent phases in the HMM

To verify whether HMM with two latent phases was a sufficiently good description of our data,
we performed cross-validation analyses fitting HMMs with number of phases n ranging from
1 (single Poisson process for each channel) to 8. We implemented a 4-fold cross-validation
procedure, where the model was fitted to a randomly selected subset of 3/4 trails, and then the
cross-validation error Varres was computed for each channel on the remaining 1/4 trials using
200 ms window (as described in supplementary methods 2.2.2). The procedure was repeated
4 times (folds) using each of four 1/4 trials as a test-set for computing the cross-validation
error. The cross-validation error for HMMs with n = 1, . . . 8 phases was normalized by the
cross-validation error of the 1-phase HMM and then averaged across all channels, conditions (4
attention conditions × 8 stimulus orientations) and cross-validation folds.

Plotting this normalized cross-validation error against the number n of latent HMM phases
shows how model fit improves with every additional phase for each recording session (fig. S5A),
which allows for selection of the most parsimonious model based on the elbow (kink) in this
error plot (so called elbow method). For most recording sessions, addition of the second HMM-
phase greatly reduced the cross-validation error compared to the 1-phase HMM, whereas adding
more phases resulted in only marginal improvements. The error curves for these recordings
display an elbow at n = 2. For some recording sessions, HMMs with n > 1 phases did not
perform better than the 1-phase HMM and the error curves did not exhibit a kink for these
recordings.

We selected the most parsimonious model for each recording session, by considering how
adding each additional phase to the HMM reduced the cross-validation error (i.e. improved
the model fit). We computed the relative change in cross-validation error as the difference in
normalized cross-validation error for HMMs with n + 1 and n phases (fig. S5B) and defined
a criterion for determining the number of phases in the most parsimonious HMM: the number
of phases was increased only if an additional phase reduced the cross-validation error by more
than 10%. For all recordings, HMMs with more than 2 phases were never selected. For 15
(33%) recordings, a one-phase HMM was the most parsimonious model. For most recordings
(31 total, 67%), the two-phase HMM was the most parsimonious model. Across all record-
ings, the variance explained by the 2-phase HMM (R2) was tightly correlated with the average
spike-count correlation (i.e. noise correlation, a pairwise measure that quantifies the level of
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coordinated activity across ensemble), which indicates that On-Off dynamics largely contribute
to measured spike-count correlations.

3.4 Replication of On-Off dynamics across different datasets
We ascertained that our observation of On-Off transitions in the visual cortex of behaving mon-
keys was not contingent on specific experimental procedures employed in our laboratory nor on
details of our behavioral tasks. To this end, we analyzed two additional datasets recorded from
area V4 of four different behaving monkeys, in two different laboratories, and with two differ-
ent types of electrodes. The first additional dataset consisted of 20 recording sessions from area
V4 of two fixating monkeys obtained with a different type of 16-channel linear array electrodes.
All experimental procedures were in accordance with the European Communities Council Di-
rective RL 2010/63/EC, and Use of Animals for Experimental Procedures, and the UK Animals
Scientific Procedures Act. Recordings were made with 16-channel V-Probes (Plexon). These
electrodes are conical in shape (tapering diameter of maximum 185 µm) and have a row of
16 circular platinum/iridium electrical contacts (15 µm diameter) with 150 µm center-to-center
spacing. Visual stimuli were square-wave gratings centered on the receptive field location. We
analyzed multi-unit activity of visually responsive channels. The number of visually-responsive
channels per recording ranged between 8 and 12 (median 9). On-Off transitions synchronous
across cortical layers were clearly observed in raw spike rasters during both spontaneous and
stimulus-driven activity (fig. S7A) and manifested in a tri-phasic shape of spike auto- and cross-
correlations (fig. S7B). The second additional dataset consisted of 212 single units recorded
from area V4 with conventional single electrodes in two different monkeys during fixation with
a static oriented-grating stimulus presented in neurons’ receptive field (see supplementary meth-
ods 2.1 for details). In this additional single-unit dataset, spike auto-correlations also exhibited
a very similar triphasic shape (fig. S2E), indicating that such correlations are not an artifact of
the linear array microelectrodes.

We replicated all our HMM-based results on the additional laminar dataset. First, HMM
captured on average half of the explainable variance (R2) during spontaneous and stimulus-
driven activity in this additional laminar dataset (fig. S7C,D; cf. fig. S4A,B,D,E). Second, spik-
ing of individual units throughout the cortical depth was strongly modulated by the On-Off tran-
sitions: firing rates during the On and Off phases were significantly different (Wilcoxon signed
rank test, p < 0.05) in the overwhelming majority of MUs (97% during stimulus-driven activity,
95.4% during spontaneous activity), and MIon-off was positive in nearly all MUs (99% during
stimulus-driven activity, 98% during spontaneous activity), (fig. S7E; cf. fig. S4C). Third, for
most recording sessions (17 total, 85%), the two-phase HMM was the most parsimonious model
(fig. S7F,G; cf. fig. S5A,B). For all recordings, HMMs with more than 3 phases were never se-
lected. The three-phase HMM was selected only for one recording with the relative decrease
in error relative to the two-phase HMM of 10.12%, just hovering below the 10% acceptance
criterion. For 2 (10%) recording sessions, one-phase HMM was the most parsimonious model.
Fourth, across all recording sessions, the variance explained by the two-phase HMM (R2) was
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tightly correlated with the average spike-count correlation (fig. S7H, cf. fig. S5C). Thus results
of HMM analyses were quantitatively very similar between the two laminar datasets.

3.5 Rate-matching control
We examined whether the observed increase in the On-episode duration could be confounded
by higher trial-averaged firing rates in the attention conditions. Longer durations of On episodes
contribute to higher trial-averaged firing rates, and thus the HMM fit might account for higher
trial-averaged firing rates by estimating longer On episodes. This possibility is unlikely, how-
ever, because firing rates and transition probabilities (controlling episode durations) are all free
parameters in the HMM and can be adjusted independently to fit the data. Nonetheless, we
performed a rate-matching analysis to control for any potential biases.

For each unit, we equated the trial-average firing rates across four behavioral conditions
(corresponding to four directions of the attention cue) by randomly deleting subsets of spikes
from conditions with higher firing rates, and then fitted the HMM to the rate-matched data and
estimated the durations of On and Off episodes. As expected, even when enhancement of the
trial-average firing rate was eliminated (fig. S9B,C) the average duration of On episodes was
still significantly longer during covert and overt attention than in control conditions (fig. S9D,
covert: median change in duration 13 ms, p < 10−3; overt: median change in duration 19 ms,
p < 10−5). Therefore, the increase in On-episode durations was not an artifact of the concurrent
increase in the trial-averaged firing rates.

3.6 Modeling On-Off dynamics as a continuously varying latent state
3.6.1 Gaussian Process Factor Analysis (GPFA) model

While HMM describes the On-Off dynamics as instantaneous transitions between discrete la-
tent phases, we also considered an alternative approach. We fitted our data by the GPFA model,
where the latent state is assumed to be continuous and evolve smoothly in time (26,55). Specif-
ically, the one-dimensional latent state x(t) is modeled as a Gaussian process with a smooth
auto-correlation function parametrized by a single timescale τ :

Cov[x(ti), x(tj)] = exp

(
−(ti − tj)2

2τ 2

)
.

A linear-Gaussian relationship is then defined between the latent state x and neural observations
yk(t) (k = 1, . . . 16):

yk(t)|x(t) ∼ N (ckx(t) + dk, σk).

The time-series of neural observations yk(t) for channel k is obtained by measuring spike-counts
in 10 ms bins and then performing the square-root transformation of these spike-counts, which
is known to stabilize the variance. The parameters ck, dk, σk for each channel and the timescale
parameter τ for the entire ensemble (49 parameters total) are estimated from data using the
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expectation-maximization algorithm. Similar to the HMM, these estimated parameters are then
used to decode on a trial-by-trial basis the most likely continuous latent trajectories that underlie
the observed spike trains (55).

3.6.2 Correspondence between the On and Off episodes decoded by HMM and GPFA

We examined the correspondence between continuous trajectories decoded by GPFA and the se-
quences of discrete On and Off episodes decoded by HMM. By visual inspection, GPFA’s latent
trajectories were also closely aligned to the periods of vigorous and faint spiking (fig. S10A).
During the On and Off episodes in spike rasters, GPFA’s trajectories were flatter and did not
change sign, while around the transition times, the trajectories switched sign and had a steeper
slope. Accordingly, the distributions of GPFA’s decoded latent state deviated from the a pri-
ori assumed Gaussian distribution and were clearly bimodal for many recordings (fig. S10B).
For each empirical distribution of the latent state, we quantified deviation from the unimodal
Gaussian distribution by computing Sarle’s bimodality coefficient: BC = (γ2 + 1)/κ, where
γ is the skewness and κ is the kurtosis of the empirical distribution. BC varies between 0 and
1, where larger values indicate stronger bimodality and BC = 1/3 for the unimodal Gaussian
distribution. Across recording sessions, BC of the GPFA’s latent state correlated with the vari-
ance explained (R2) by the two-phase HMM (fig. S10C). Moreover, the subset of recordings
with BC ≈ 1/3 nearly perfectly overlapped with the subset of recordings for which the one-
phase HMM (i.e. single-Poisson process for each channel) was the most parsimonious model
(fig. S10C, c.f. fig. S5). Thus, both discrete-state HMM and continuous-state GPFA models
identified similar features in the spiking activity and were comparable in their ability to detect
On-Off transitions.

Next, we examined how dynamics of the GPFA-decoded continuous trajectories corre-
sponded to the On-Off transition dynamics determined by HMM. Times of zero-crossings,
when GPFA’s latent trajectories switched sign, closely coincided with the On-Off transition
times detected by the HMM (fig. S10A). We therefore defined the On and Off episodes in
GPFA’s continuous latent trajectories as periods between two subsequent zero-crossings during
which the trajectory stayed above and below zero, respectively. Such segmentation based on
zero-crossings of the GPFA’s latent trajectories resulted in On and Off episodes that closely
matched the On and Off episodes determined by HMM (fig. S10B). We verified that the empir-
ical distributions of the GPFA-decoded On- and Off-episode durations tightly overlapped with
those decoded by HMM (fig. S10D). However, there was a difference in how these empirical
distributions of episode durations were related to GPFA’s and HMM’s model parameters. HMM
has two distinct timescale parameters τon and τoff, and the empirical distributions of On and Off
episode durations (decoded by either HMM or GPFA) tightly overlapped with the theoretical
exponential distributions with the decay time-constants calculated from the fitted HMM transi-
tion probabilities (fig. S10D). GPFA, on the other hand, has only a single timescale parameter
τ , which is optimized for maximal smoothness of latent trajectories that still preserves essential
features in the data. This fitted GPFA timescale τ was systematically smaller than the time-
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constants of empirical exponential distributions of On and Off episode durations (fig. S10D).
This discrepancy is explained by the fact that transitions between the On and Off phases in the
data occur much faster than the average dwelling times in these On and Off phases. Since GPFA
has only a single timescale parameter τ , its value is estimated closer to the shortest timescale
in the data, because otherwise excessive smoothing around transition times would reduce the
fit accuracy. Accordingly, the average durations of On and Off episodes determined by HMM
and GPFA models were very similar across recording sessions (fig. S10E, lower panels). These
average episode durations were accurately captured by the τon and τoff timescales of the HMM
(fig. S10E, upper panels), whereas the GPFA’s timescale parameter τ was systematically smaller
than the average episode durations across recording sessions (fig. S10E, middle panels).

Therefore both HMM and GPFA represent adequate models capable to capture On-Off tran-
sitions in ensemble spiking activity. However, the dynamics decoded by HMM from the data
agree with the HMM’s a priori assumptions (exponential distributions of episode durations with
time-constants matching HMM’s parameters), whereas dynamics decoded by GPFA from data
differ from the GPFA’s a priori assumptions (GPFA’s timescale parameter was systematically
smaller than the empirical episode durations and GPFA’s empirical latent-state distributions
deviated from the unimodal Gaussian prior). These discrepancies together indicate that our
data exhibit a timescale separation between transition and dwelling times, which is typical for
metastable systems.

3.6.3 Attentional modulation of On-Off dynamics decoded by GPFA

We considered whether the observed increase in the On-episode duration could be confounded
by HMM’s a priori assumption of discrete On and Off phases in spiking activity. In a control
analysis, we compared the average duration of On and Off episodes decoded from data by the
GPFA model in attention and control conditions. The average duration of On episodes decoded
by GPFA was significantly longer during covert and overt attention than in control condition
(fig. S10F, upper panel, covert: median change in duration 12 ms, p = 0.001; overt: median
change in duration 15 ms, p < 10−4). Therefore, the increase in On episode durations was
confirmed by the GPFA model, which assumes continuous unimodal fluctuations of the latent
state instead of the discrete On and Off phases.

3.7 Relationship between On-Off transitions and microsaccades
Activity of neurons in the visual cortex is profoundly influenced by small fixational eye move-
ments, called microsaccades (56, 57). In particular, V4 neurons exhibit strong excitatory re-
sponses within ∼ 100 ms following a microsaccade (56). Therefore, we can expect that On-Off
dynamics are also influenced by microsaccades. We quantified the relationship between On-Off
transitions and microsaccades in order to assess whether microsaccades could account for the
changes in the On-Off dynamics observed during attention.
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We quantified the relationship between the On-Off transitions and microsaccades by com-
puting cross-correlations between the times of microsaccades and times of On-to-Off and Off-
to-On transitions. First, we detected microsaccades and found that, the median microsaccade
amplitude was 12.7 and 14.7 arcmin in monkeys G and B, respectively (fig. S11A), similar
to previous studies (56, 57). Then, we computed cross-correlations using the jitter-correction
method (the same procedure that was used to compute spike auto- and cross-correlations, with
10 ms bin size and 100 ms jitter bin size). Cross-correlation between the times of microsac-
cades and Off-to-On transitions exhibited a small negative deflection around zero time-lag and
a large positive peak at ∼ 60 ms time-lag (fig. S11B, upper panel), indicating that the probabil-
ity of transition from Off to On phase was enhanced ∼ 60 ms following a microsaccade. On
the other hand, cross-correlation between the times of microsaccades and On-to-Off transitions
exhibited a small negative peak at ∼ 60 ms time-lag (fig. S11B, lower panel), indicating that
transitions from On to Off phase were less likely to occur ∼ 60 ms following a microsaccade.
This relationship between the microsaccades and On-Off transitions was not deterministic: state
transitions occurred during epochs of highly stable gaze (no microsaccades, fig. S11C, lower
panel), and conversely, not every microsaccade was followed by a transition (fig. S11C, upper
panel). On average, only 11% of all Off-to-On transitions were preceded by a microsaccade
and only 28% of microsaccades occurring during the Off phase were followed by an Off-to-On
transition within a 30− 75 ms window relative to the time of microsaccade (fig. S11D).

While the relationship between the On-Off transitions and microsaccades was not determin-
istic, the existing (small) probabilistic relationship between them raises the question of whether
the spatially selective changes in cortical state dynamics we observed could be due to microsac-
cades. Indeed, since the probability of Off-to-On transitions is enhanced and the probability
of On-to-Off transitions is suppressed following a microsaccade, an increase in the On-episode
durations could, in principle, result from an increase in the rate of microsaccades. However, to
account for the spatially selective increase in the On-episode durations, the microsaccade rate
should selectively increase only on trials when monkeys attended (covertly or overtly) to the
receptive field (RF) location of recorded V4 neurons, which is unlikely since monkeys attended
to one of four spatial locations on every trial. We compared the microsaccade rate between
trials when monkeys attended to the V4 RF location and control trials (fig. S11E), and found
no significant increase of microsaccade rate in all cases except the covert attention condition
in monkey B, where the microsaccade rate was significantly higher than in control condition
(p = 0.002, Wilcoxon signed rank test). However, a significant increase in the On-episode
durations during attention was observed in all attention conditions in both monkeys, except for
the covert attention condition in monkey B (supplementary table 1). Thus the only instance in
which the microsaccade rate was higher in the attention than in the control condition was the
one in which no increase in the On-episode durations was observed. In contrast, an increase in
the On-episode durations was observed in all other conditions for which the microsaccade rate
was the same.

We also considered a possibility that increases in On-episode durations could result from
changes in the direction of microsaccades between attention and control conditions. We first
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compared the microsaccade frequency between attention and control conditions, across mi-
crosaccade directions, aligned to the RF location (fig. S11F, the RF location corresponds to
0◦, which aligns with the covertly attended stimulus in the covert condition, and is opposite to
covertly attended stimulus in the overt condition). Indeed, the relative frequency of microsac-
cades between the attention and control conditions differed across directions (chi-squared test,
monkey G: covert p < 10−10, overt p < 10−10; monkey B: covert p < 10−10, overt p < 10−10).
However, the pattern of this effect differed between the two monkeys. Although there was an
overall tendency for microsaccades to be more frequently directed towards the approximate lo-
cation of the covertly attended stimulus, microsaccades were more frequently directed towards
the location opposite the covertly attended stimulus in the covert condition for monkey B (chi-
squared residuals test at 0.05 significance level with Bonferroni correction, 20◦ bins, centers of
significant bins: monkey G: covert 20◦, 40◦, 60◦, 80◦; overt 220◦, 260◦; monkey B: covert 160◦,
180◦, 200◦, 220◦; overt 160◦, 180◦, 200◦).

We then considered whether microsaccades towards the RF had a greater impact on On-Off
transitions. Given the lack of an overall increase of microsaccade rate in attention above control
conditions (with the exception of the covert condition for monkey B, fig. S11E, supplemen-
tary table 1), biases in the microsaccade frequency across directions should only be expected
to contribute to the observed increase in On-episode durations if those biases coincide with in-
creases in the rate of Off-to-On transitions following microsaccades in the bias directions, or
with decreases in the rate of On-to-Off transitions following microsaccades in the bias directions
(see fig. S11B). However, the fraction of microsaccades followed by Off-to-On transitions was
not significantly different across microsaccade directions in either covert or overt conditions
(fig. S11G, chi-squared test, covert p = 0.367, overt p = 0.311). The fraction of microsaccades
followed by On-to-Off transitions was also not significantly different across microsaccade di-
rections in the covert condition (chi-squared test, p = 0.122, histogram not shown since the
overall fraction of microsaccades followed by On-to-Off transitions was low, 0.085). In the
overt condition, the fraction of microsaccades followed by On-to-Off transitions was signifi-
cantly lower only for one direction (−20◦ bin, chi-squared residuals test at 0.05 significance
level with Bonferroni correction) that, however, was opposite the directions towards which the
microsaccade frequency was increased in this condition (fig. S11F). Thus the rate of On-Off
transitions was largely independent of microsaccade directions. Furthermore, the one direction
for which there was a subtle change in the On-Off transition rates was not aligned with those di-
rections for which the microsaccade frequency changed. Therefore changes in the microsaccade
rate and direction cannot explain the increase of On-episode durations during attention.

To further rule out the possibility that the increase in On-episode durations was due to mi-
crosaccades, we also repeated all analyses for only the trials in which no microsaccades oc-
curred during the analyzed time period. Although this procedure left us with less data, the
pattern of results was unchanged (fig. S11H, cf. Fig. 3D). On-episode durations were signifi-
cantly longer in the overt attention condition than in control (Wilcoxon signed rank test, overt:
median change in duration 10 ms, p = 0.005), and On-episode durations were also longer in
the covert attention condition relative to control and approached significance (Wilcoxon signed
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rank test, covert: median change in duration 9 ms, p = 0.122). When the two attention condi-
tions were combined, the increases in On-episode durations were highly significant (Wilcoxon
signed rank test, median change in duration 10 ms, p < 10−3). Thus, the increase of On-episode
durations during attention was not due to microsaccades.

3.8 Relationship of On-Off dynamics to spike-count variability and cor-
relations

It has been long known that responses of cortical neurons vary substantially across repeated
measurements under identical experimental conditions (usually called trials). This response
variability is classically quantified by counting spikes within some time-window T , and then
calculating the mean and variance of these spike-counts N across trials for individual neurons,
and correlations between spike-counts for pairs of simultaneously recorded neurons. Spike-
count variability and correlations have been experimentally scrutinized using different time-
windows T , typically ranging from 50 to 1, 000 ms across studies (22, 23). Many characteristic
features of this correlated spike-count variability have been documented, yet the origin of these
correlated fluctuations remained unknown. Since our work identifies On-Off dynamics as a
major source of such correlated fluctuations in neural responses, it is important to establish
how different features of spike-count statistics can be explained by knowing underlying On-Off
dynamics.

3.8.1 Spike-count statistics in the model of On-Off dynamics

We used our two-state model of the On-Off dynamics to predict spike-count statistics measured
over some arbitrary time-window T (fig. S12A). In the model, dwelling times in the On and
Off phases are exponentially distributed with the average durations τon and τoff, respectively.
Neurons emit spikes as inhomogeneous Poisson processes with different mean rates ron and
roff during the On and Off phases, respectively. Since the On-Off dynamics are the same for
all neurons, we introduce a two-state process r(t) switching between 0 (Off-phase) and 1 (On-
phase). Firing rates λ(t) of different neurons are then parametrized as

λ(t) = roff + r(t)(ron − roff), (5)

where the On and Off firing rates (ron and roff) can be different across neurons, but the switching
process r(t) is the same. On each trial, the number of spikes generated by a neuron during the
time-window T is described by a Poisson random variable with the rate given by the integral

Λ =

∫ t+T

t

λ(t)dt. (6)

The Poisson rate Λ fluctuates from trial-to-trial, because the proportion of On and Off phases
within the time-window T varies from trial-to-trail (fig. S12A). Since the On-Off switching
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process is the same for all neurons, it is convenient to separate the time-parameters τon, τoff and
T (that are common for all neurons) from the On and Off firing-rate parameters (that vary across
neurons) by introducing a normalized rate R:

R =

∫ t+T

t

r(t)dt. (7)

The Poisson rate Λ for each neuron on every trial is then simply expressed as

Λ = roffT +R∆r, (8)

where we introduced the On-Off firing-rate difference

∆r = ron − roff. (9)

In this On-Off model, all spike-count statistics of individual neurons are analytically cal-
culated from just four model parameters: the timescales τon, τoff and firing rates ron, roff, and
spike-count correlations between pairs of neurons are analytically calculated from just six pa-
rameters (On and Off firing rates are needed for both neurons) for arbitrary time-window T . For
each neuron, the mean and variance of the spike-count N are expressed through the mean and
variance of the normalized rate R as:

E[N ] = roffT + ∆rE[R], (10)
Var[N ] = ∆r2Var[R] + roffT + ∆rE[R]; (11)

and for a pair for neurons i, j, the spike-count correlation is expressed as:

rsc = Corr[Ni, Nj] =
∆ri∆rjVar[R]√
Var[Ni]Var[Nj]

. (12)

The mean E[R] and variance Var[R] of the normalized rate are analytically calculated as func-
tions of τon, τoff and T :

E[R] =
τon

τoff + τon
T, (13)

Var[R] =
2τ 2onτ

2
off

(τoff + τon)3

[
T − τonτoff

τoff + τon

(
1− exp

(
−τon + τoff

τoffτon
T

))]
. (14)

3.8.2 On-Off dynamics predict multiplicative gain fluctuations

Previous studies have found that spike-count variability of cortical neurons can be well de-
scribed by “gain-modulated Poisson” models, where neuron’s firing rate on every experimental
trial is modulated (multiplied) by a multiplicative gain factor that fluctuates across trials (31,32).
The multiplicative noise (gain) in these models is an assumption based solely on the experimen-
tal observation that the variance-to-mean relation of spike-counts is accelerating, i.e. deviates
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more and more from the Poisson expectation (unity line) as spike-count grows (see e.g., figs.
1,2 in Ref. (31) and fig. 1-supplement 2 in Ref. (32)). These models, designed to capture
spike-count statistics over some fixed time-window T (e.g., T = 1, 000 ms in Ref. (31) and
T = 200 ms in Ref. (32)), explicitly assume that gain fluctuations occur on timescales slower
than T and neurons’ firing-rates are constant over the duration of each time-window T . This
assumption entails that within-trial spike-time correlations should be exactly zero on timescales
shorter than T , which, however, is not supported by the temporal profile of spike-time correla-
tions measured on these short timescales (see figs. S2,S7B).

Gain-modulated Poisson models are functional models of neural response (such as those
based on Generalized Linear Models) and their components do not have clear biophysical in-
terpretation. Accordingly, these models do not provide insight into the sources or causes of
apparent fluctuations in the multiplicative amplification signals. In contrast, our work identifies
a new phenomenon, synchronous On-Off transitions, which appear to represent exactly such a
source of correlated variability in neural responses. It is therefore natural to ask whether spike-
count variability arising from the On-Off dynamics is consistent with the multiplicative gain
fluctuations. Note that our HMM (and GPFA) models track the On-Off firing-rate fluctuations
with much finer temporal resolution (10 ms bins) than the time-windows over which apparent
gain-fluctuations have been observed (200 − 1, 000 ms). Hence, our two-state On-Off model
can predict spike-count statistics over these longer time-windows, but not the other way around:
multiplicative gain-fluctuations per se do not predict existence of On-Off transitions.

We calculated analytically the spike-count variance and mean for the two-state On-Off
model and found that the model predicts the accelerating variance-to-mean relation that has
been interpreted as evidence for multiplicative gain fluctuations (fig. S12B). We considered two
scenarios. In the first scenario, we computed the mean and variance for the same neuron over
variable duration time-windows (ranging from 1 to 316 ms). We used the two example neu-
rons from fig. S12A, which follow through exactly the same sequence of On-Off episodes on
every trial, but have different On and Off firing-rates. Variance-to-mean relation is accelerat-
ing for both neurons, but it is more rapidly accelerating for the neuron with greater difference
∆r = ron − roff (red and blue lines in fig. S12B). In this scenario, where the spike-count mean
and variance are changing because the time-window T is changing, the On-Off model predicts
that the mean E[R] increases linearly with T , while the variance Var[R] increases quadratically
with T , for small T (it saturates to a linear dependence for large T , see equations 13,14). Hence
the model predicts a quadratic departure from the Poisson prediction (unity line) that is faster
for neurons with greater ∆r (see equation 11).

In the second scenario, we computed the mean and variance of spike-count over a fixed
time-window across a hypothetical population of 2,000 neurons, which are all modulated by the
same On-Off dynamics, but whose On and Off firing rates vary across the population (gray dots
in fig. S12B). In this scenario, E[R] and Var[R] are the same for all neurons, but the mean and
variance of spike-count are varying because of the variation in roff and ∆r across the population.
The variance-to-mean relation is accelerating, because the mean spike-count increases linearly
with ∆r while the spike-count variance increases quadratically with ∆r (see equations 10,11).
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Note that in actual physiological measurements the variance-to-mean relation is expected to
be more scattered than the trend predicted by the On-Off model due to variation in On and
Off timescales across recordings and also because empirical estimates of variance from just a
few hundred trials are very noisy. In summary, our two-state model predicts the signature of
multiplicative gain fluctuations in spike-count statistics and explains how it emerges from the
underlying On-Off dynamics.

3.8.3 On-Off dynamics predict spike-count correlations

Our two-state On-Off model predicts that spike-counts of pairs of neurons are correlated across
trials, because the neurons follow through the same sequence of On and Off episodes on ev-
ery trial (fig. S12C). The value of spike-count correlation rsc for each pair can be analytically
calculated from six model parameters (equation 12). As the equation shows, the value of rsc

depends not only on the variance of the common On-Off switching process (Var[R]), but also
on the amplitude of modulation by these On-Off dynamics for each neuron (i.e. ∆ri and ∆rj in
the pair). Thus even when all neurons in the population are synchronized to the same On-Off
dynamics, the spike-count correlations vary across pairs due to variation in neurons’ On and
Off firing rates.

Our On-Off model predicts, that when spike-count correlations are studied across multiple
conditions (e.g., in response to different sensory stimuli), the value of rsc should change as a
function of condition-dependent firing-rate changes even if the underlying On-Off dynamics
would not change across conditions (although we find that On-Off dynamics change as a func-
tion of stimulus condition as well, fig. S6). Typically, the spike-count correlations are studied
as a function of the geometric mean of mean firing rates of two neurons across conditions,
and it has been observed that there is no consistent relationship between changes in the geo-
metric mean rate and spike-count correlation: for different pairs of neurons rsc can decrease,
increase or not change at all as a function of the geometric mean rate (31). These different
trends have been fitted by the gain-modulated Poisson model augmented with two additional
phenomenological parameters: the point-process correlation and the gain correlation parame-
ters (31). These two extra parameters, fitted separately for each pair, are key for capturing the
different spike-count correlation trends, but their physiological origin is unclear (as it is usually
the case with functional models).

In contrast, our On-Off model can analytically explain different spike-count correlation
trends simply from how On and Off firing rates of neurons change across conditions (equa-
tion 12). If changes in mean firing rate across conditions are mainly driven by changes in roff

and ron, but without substantial change in the On-Off firing-rate differences ∆r, the model pre-
dicts decrease in spike-count correlations with increase in geometric-mean rate (fig. S12D). On
the other hand, if changes in mean firing-rate across conditions are mainly driven by changes
in ∆r, a positive trend is predicted (fig. S12E). In neurophysiological data, we expect to see a
heterogenous mixture of On and Off firing rate changes across conditions for different neurons,
as well as changes in the On-Off dynamics themselves across conditions, which would imply a
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broad distribution of how spike-count correlations depend on mean firing rates.

3.8.4 On-Off dynamics account for attention-related changes in spike-count correlations

Several recent studies have shown how spike-count variability and correlations can be affected
by cognitive factors such as attention, learning and task structure (24, 25, 58). The most widely
known example is the reduction in spike-count correlations between visual cortical neurons dur-
ing attention, first reported by Mitchell et al. (2009) (27) and Cohen and Maunsell (2009) (28).
Both these studies found that attention-related reduction in spike-count correlations improved
signal-to-noise ratio of pooled neural signals substantially more than concurrent increase in
mean firing rates, suggesting that decorrelation may be a universal signature of attention. How-
ever, subsequent studies showed that changes in spike-count correlations during attention can be
much more versatile. In particular, spike-count correlations were found to flexibly increase or
decrease during attention depending on whether the neurons provided evidence for the same or
opposite choices (29). Moreover, spike-count correlations were found to increase between pairs
of neurons with overlapping receptive fields situated in cortical areas V1 and MT when attention
was directed within their common receptive field, while, at the same time, spike-count correla-
tions decreased between neurons within each area (30). In combination these results show that
the effects of spatial attention on spike-count correlations are more complex than previously
thought and can follow opposing trends (increase vs. decrease) depending on the structure of
a behavioral task and on the relative positioning of neurons in the cortex. Since these different
trends in spike-count correlations could in principle arise from appropriate changes in On-Off
dynamics (fig. S12D,E), we wondered (i) how spike-count correlations changed during atten-
tion in our dataset, and (ii) whether these changes in spike-count correlations can be accounted
for by the On-Off dynamics model.

Changes in spike-count correlations during covert and overt attention. We examined
attention-related changes of spike-count correlations in our dataset. Compared to the origi-
nal work by Mitchell et al. (2009) and Cohen and Maunsell (2009), our experimental design
incorporated two notably different approaches (14). First, we recorded across cortical layers
from neurons largely within a single column, and with tightly overlapping receptive fields. Sec-
ond, in our task, the focus of covert attention was behaviorally dissociated from the target of an
upcoming saccade (overt attention). Thus attentional demands, as well as relative positioning
of neuronal receptive fields in our dataset differed from previous studies. Since both factors
are likely to affect attention-related changes in spike-count correlations, we could have not
predicted how spike-count correlations should change during covert and overt attention in our
experiment.

We measured changes in spike-count correlations of MUA during covert and overt attention
relative to control conditions using T = 200 ms window (400 to 600 ms after the attention-cue
onset) and found a broad distribution of changes across pairs (fig. S13A). Changes in spike-
count correlations varied a great deal from pair to pair (standard deviation of changes: 0.21
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for both types of attention). However, their distribution across the population was nearly sym-
metrical around zero and the net change in spike-count correlations was small, yet significant:
on average spike-count correlations slightly increased during covert attention and slightly de-
creased during overt attention (covert: mean change 0.011, p < 10−4; overt: mean change
−0.005, p < 10−4; permutation test with 104 shuffles). Thus in our data, changes in spike-
count correlations during covert and overt attention were broadly distributed and on average
had small opposing trends.

On-Off model accounts for changes in spike-count correlations. The observation of op-
posing average changes in spike-count correlations during covert and overt attention may seem
difficult to reconcile with the increase in On-episode durations, which was observed in both
attention conditions. Intuitively, an increase in On-episode durations is expected to reduce the
variance of the On-Off switching process (Var[R]) and, as a consequence, to reduce spike-count
correlations (equations 12,14). Indeed, when all other parameters are held constant, the aver-
age measured increase in On-episode durations predicts a very small reduction in spike-count
correlations (fig. S13B).

However, the On-Off model also makes a very specific prediction that the magnitude of
spike-count correlation should increase with the magnitudes of On-Off firing-rate difference
(∆r = ron− roff). Specifically, the magnitude of spike-count correlation between neurons i and
j is directly proportional to the product ∆ri∆rj (equation 12). This is intuitive, because the only
source of spike-count correlations in our On-Off model is the common switching process, hence
the stronger a neuron is modulated by the On-Off dynamics (the greater is its ∆r), the stronger it
will be correlated with other neurons in the population. As a consequence, the change in spike-
count correlation is predicted to be proportional to the change in ∆ri∆rj during attention. This
prediction was clearly borne out by the data: we found that the measured change in spike-
count correlations had a strong trend as a function of the change in the pair’s On-Off firing-rate
difference defined as

√
∆ri∆rj (y-axis vs. color-axis in fig. S13C). Moreover, changes in

spike-count correlations measured from the data were accurately matched by the changes in
spike-count correlations predicted by the On-Off model, i.e. computed on a pair-by-pair basis
using the fitted HMM parameters: τon, τoff, ron, and roff (y vs. x-axis in fig. S13C). We observed
that attention-related changes in spike-count correlations ranged widely across the population
and that this broad distribution of changes was accurately matched by predictions of the On-Off
model.

Thus, although the increase in On-episode durations predicts a slight reduction in spike-
count correlations during attention, another important factor determining changes in spike-count
correlations is change in pair’s On-Off firing-rate difference (defined as

√
∆ri∆rj). In our

data, changes in a pair’s On-Off firing-rate difference were broadly distributed but on average
they were slightly, yet significantly, more positive for covert than for overt attention (inset in
fig. S13C, covert: median change 1.5 Hz; overt: median change 0.3 Hz, p < 10−4, permutation
test with 104 shuffles). This slight difference was sufficient to explain small opposing trends
observed on average in spike-count correlation changes: the On-Off model predicted on average
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slight increase in spike-count correlations during covert attention and slight decrease during
overt attention (covert: mean predicted change 0.011, overt: mean predicted change −0.004).
Interestingly, the dependence of changes in spike-count correlations on changes in pair’s On-Off
firing-rate difference was very similar for the covert and overt attention conditions (fig. S13C),
and the difference observed on average between these two attention conditions was merely a
result of slightly different changes in firing rates, rather than of a more fundamental difference
in structure of population activity.

In addition, note that changes in spike-count correlations did not systematically depend on
changes in geometric mean firing rate of the pair (fig. S13D). When the data were grouped
according to changes in geometric mean firing rates, the average change in spike-count correla-
tions for each group was very small (slightly positive and slightly negative for covert and overt
attention, respectively). The broad distribution of spike-count correlation changes was masked
in this representation, although excellent agreement between the data and model predictions
was still observed.

3.8.5 Relationship to previous work

Attention-related changes of spike-count correlations in our laminar recordings are accurately
accounted for by the On-Off dynamics model, but differ from the previously observed reduc-
tions in spike-count correlations (27, 28) (though changes during overt attention are similar).
Among the experimental differences that may account for why our observations differ from
those of Mitchell et al. (2009) and Cohen and Maunsell (2009), the most parsimonious may
be the difference in the lateral separation between neurons in their recordings and ours. Spike-
count correlations are known to decrease sharply with lateral separation, which explains why
the overall magnitude of spike-count correlations in our data (median MUA correlation 0.318) is
greater than typically reported for laterally separated neurons in V4 (∼ 0.05− 0.2) (23). More-
over, the decrease in spike-count correlations with lateral separation may be itself explained by a
limited spatial coherence of the On-Off states, which is expected given the local modulations of
On-Off dynamics during attention that we observe. Indeed, the On-Off model predicts three fac-
tors that could contribute to attention-related reduction in spike-count correlations: 1) increase
in On-episode durations, 2) changes in the On and Off firing rates across the population, such
that ∆ri∆rj is reduced on average, 3) changes in how the On-Off fluctuations are coordinated
laterally across cortex, such that their spatial coherence is reduced. The last factor is likely
to contribute substantially to reduction in spike-count correlations among laterally separated
neurons. Testing this hypothesis and identifying relative contributions of these three factors
remains an important area for future study, which would require understanding how attention
interacts with spatial coordination of On-Off dynamics, potentially through dense recordings at
multiple laterally separated locations in the cortex.

A recent model by Rabinowitz et al. (2015) (32) has parsimoniously attributed reduction
in spike-count correlations during attention to reduction in fluctuations of shared modulatory
signals. This functional model of population activity, based on a gain-modulated Poisson
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model (31) with a set of modulatory gain signals shared across neurons, was fitted to Cohen
and Maunsell (2009) dataset. The variance of the shared gain in the fitted model was found
to decrease during attention, which accounted for some (but not all) of the reduction in spike-
count correlations in the data. The model thus provides a quantitative framework encapsulating
correlated spike-count variability, but it leaves unsettled what causes apparent fluctuations in
shared gain and what mechanisms reduce their variance during attention. Similar to the discus-
sion above, our model of On-Off dynamics suggests three possible factors that could underlie
the apparent reduction in gain variance: changes in the timescales, firing rates and spatial co-
herence of the On-Off states. Determining the relative contributions of these factors remains an
important area for future study.

The shared-gain model and our On-Off model may appear to engage different neural mech-
anisms. This is because we model neural phenomena occurring on much shorter timescales
than phenomena modeled by Rabinowitz et al. (2015). Over longer timescales (trial-to-trial),
both models indeed capture the same neural phenomenon (e.g., see fig. S12B), but our On-Off
model also captures phenomena on shorter timescales (within single trials) that are not mod-
eled by Rabinowitz et al. (2015). On the other hand, Rabinowitz et al. (2015) modeled data
recorded from neurons more broadly distributed across the cortical surface, and across hemi-
spheres, and therefore their model may capture features of variability not present in our record-
ings from single cortical columns. In that way, the two studies are complementary. Whereas
ours provides finer temporal resolution, theirs covers a broader spatial scale. Moreover, our
data provide two substantial insights into mechanisms of selective attention, beyond what could
have been inferred from an apparent reduction in shared-gain variability invoked by Rabinowitz
et al. (2015) study. First, the main contribution of our work is the observation that cortical-state
dynamics are locally modulated during attention, which could not have been predicted from
reduction in shared-gain variability. Reduction in gain variance could arise from mere changes
in firing rates during attention without any change in the underlying On-Off dynamics (consis-
tent with the first scenario in Fig. 3B). Second, trial-to-trial fluctuations of shared-gain, which
are predictive of behavioral performance, have been interpreted by previous studies as arising
mainly from fluctuations in attentional amplification signals (32, 33). Our results show that, in
addition, behavioral performance is influenced by endogenous fluctuations on faster timescales,
which exist independently of sensory or cognitive events, but can interact with these events.

29



A B C

V4

Recording
Chamber

Recording
Chamber

V4
V4

Fig. S1. MRI targeting of V4 recordings. MRI targeting was used to calculate electrode approach vectors
perpendicular to V4 cortical layers. (A) Coronal section of MRI image from monkey G. The border of V4
with white matter (red) and pial surface (green) were manually identified. The apparent gaps in the MRI
image (left and right side, anterior to V4) are “shadows” caused by the titanium skull screws used to secure
the implanted headpost. (B) The relative position of the recording chamber and area V4 in three dimensional
space. (C) The location of V4 within the recording chamber, viewing along the axis of the recording chamber
as if looking down through it.
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Fig. S2. Synchronous On-Off transitions are manifested in a tri-phasic shape of spike auto- and cross
correlations. (A) Auto- and cross-correlations for stimulus-driven activity during the attention task. Upper
panels: example auto- (left) and cross-correlation (right) of multi-unit activity on channel 3 and channels 3
and 15 (1.8 mm apart in depth), respectively, from the recording shown in Fig. 1c, during the time epoch
when both stimulus and attention cue were present. Dots are raw correlation values, and solid line is a
smoothed correlation drawn to guide the eye. Lower panels: population-average auto- and cross-correlations
across all units and unit-pairs, respectively; shaded area depicts±sem. (B) Same as A for single-unit activity.
(C) Same as A, but for multi-unit activity during the fixation period of the attention task before stimulus was
presented. (D) Same as C, but for single-unit activity. (E) Same as left panel in B, but for a different dataset of
165 single units recorded with conventional single electrodes in area V4 under similar behavioral conditions
(dataset from ref. (46)). Auto-correlations are computed during fixation with a static oriented-grating stimulus
presented in the neurons’ receptive field.
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Fig. S3. Relationship between local field potentials (LFPs) and On-Off transitions. (A) Average local
field potentials aligned to the times of On-to-Off (left panel) and Off-to-On (right panel) transitions for an
example recording session. LFPs for 16 recording channels are ordered in depth from superficial (top) to deep
(bottom). (B) Average current source densities (CSDs) aligned to the times of On-to-Off (left panel) and Off-
to-On (right panel) transitions for the example session from panel A. CSD exhibits a characteristic pattern of
sources and sinks alternating through the depth, which flips polarity around the time of On-to-Off and Off-
to-On transitions. (C) LFPs aligned to the times of On-to-Off (red line) and Off-to-On (blue line) transitions
averaged across all channels and all recordings. LFP exhibits a clear switch of polarity around the times of
On-to-Off and Off-to-On transitions in spiking activity. Shaded area represents s.e.m. across recordings. (D)
LFP power shifts between the On and Off phases. LFP power is suppressed at low and enhanced at gamma-
range frequencies during the On relative to Off phases. Power spectra were computed for all On and Off
episodes of at least 250 ms duration, and then averaged first across all episodes and then across recordings.
Shaded area indicates s.e.m. across recordings. (E) Distribution of the difference in LFP power between the
On and Off phases for low (0 − 10 Hz, left panel) and gamma (40 − 80 Hz, right panel) frequency ranges
across recordings. Low-frequency LFP power is higher during Off phases, whereas gamma-range LFP power
is higher during On phases. p-values are for the Wilcoxon signed rank test.
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Fig. S4. Activity modulation by On-Off transitions. (A) Scatter plot of the variance explained by the HMM
versus spike-count variability measured by the Fano factor for single- (SU, purple dots) and multi-units (MU,
orange dots). Each dot represents the average across all trials of one recording. Dashed gold line depicts the
maximal explainable variance for each Fano factor value. (B) Population-average of the variance explained
by the HMM as a function of the integration time window for single- (SU, purple line) and multi-units (MU,
orange line). Pale-colored lines depict the corresponding maximal explainable variance. White circles indicate
200 ms integration time window that was used in panel A. Error bars are ±sem. (C) Distribution of the On/Off
firing rate modulation index ([ron − roff]/[ron + roff]) for single- (SU, purple) and multi-units (MU, orange).
Dark shading in the histograms corresponds to units whose firing rate was significantly modulated by On-Off
transitions (all multi-units were significantly modulated). Single-units with modulation index ≈ 1 almost never
fire spikes during the Off phase. (D-F) Same as in A-C, but for spontaneous activity recorded during fixation
period of the attention task and during fixation task (five additional recording sessions), corresponding to two
sets of lines in panel E. White circles indicate 150 ms integration time window that was used in panel d. Due to
shorter fixation period in the attention task, integration time windows were tested only up to 350 ms and 150 ms
for monkeys G and B, respectively.
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Fig. S5. Selecting the number of latent phases in the HMM. (A) Average cross-validation error for HMMs
with n phases (n = 1, . . . 8), normalized by the average cross-validation error of the HMM with 1 phase
(equivalent to a single Poisson process). For each recording session, the 4-fold cross-validation error was
computed in 200 ms windows for each condition (4 attention conditions × 8 stimulus orientations), and
then averaged across all channels, conditions and cross-validation folds. Each line represents one recording
session. For most recordings (red lines), addition of the second phase greatly reduced cross-validation error
compared to the single-phase HMM, whereas adding more phases resulted in only marginal improvements:
the error curves display an elbow at n = 2, suggesting that 2-phase HMM is the most parsimonious model
for our data. For some recordings (teal lines), HMMs with n > 1 phases did not perform better than a single-
phase HMM. (B) Relative change in error from adding an additional phase to the HMM. Relative change in
error is defined as the difference in normalized cross-validation error for HMMs with n + 1 and n phases.
Large negative differences indicate large reduction in the cross-validation error (improvement of the model
fit). The scatter plot shows the change in error for 2- relative to 1-phase HMM (x-axis) versus 3- relative to
2-phase HMM (y-axis). Each dot represents one recording session, colors are the same as in panel a. Dashed
vertical and horizontal lines indicate the criterion, which was used to determine the number of phases in the
most parsimonious HMM: the number of phases was increased only if adding an additional phase reduced the
cross-validation error by more than 10%. For most recordings (red circles), the 2-phase HMM was the most
parsimonious model. For some recordings (teal circles), 1-phase HMM (single Poisson process) was the most
parsimonious model. These recordings did not show clear evidence for On-Off transitions and therefore were
excluded from the subsequent analyses of On and Off episodes durations. (C) Upper panel: Scatter plot of the
variance explained by the 2-phase HMM versus average spike-count correlation (i.e. noise correlation) across
recording sessions (red circles and teal diamonds: 2-phase and 1-phase recordings, respectively). Spike-count
correlations were computed as Pearson correlation coefficients between spike counts of two nonadjacent
MUA channels within the last 200 ms of the attention period (i.e. before stimulus offset) for trials of the same
condition, and then averaged across all pairs for each recording. Lower panel: distribution of spike-count
correlations across recordings (red and teal bars: stacked histograms for 2-phase and 1-phase recordings,
respectively). Recordings for which 1-phase HMM was the most parsimonious model, consistently showed
low spike-count correlations.
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Fig. S6. On episode durations increase during visual stimulation. (A) Relationship between the measured
mean (x-axis) and standard deviation (y-axis) of On and Off episode durations (green and pink dots, respec-
tively) during stimulus-driven activity. Each dot represents one condition for one recording. The measured
mean-to-standard-deviation relationship agrees well with the theoretical expectation for an exponential distri-
bution truncated between 10 ms and 1,000 ms (black dashed line), which correspond to the minimal (HMM
bin-size) and maximal (typical duration of the analysis time-window) possible measurement of an episode
duration, respectively. (B) Scatter plot of the Off timescales τoff during stimulus-driven (x-axis) versus spon-
taneous activity (y-axis). Each dot corresponds to a single recording. Flanking histograms show the marginal
distributions. The Off timescale τoff is slightly shorter during visual stimulation than during spontaneous
activity (upper right histogram obtained by computing the difference in τoff between the stimulus-driven and
spontaneous activity for each recording; triangle indicates median of the distribution; p-value is for Wilcoxon
signed rank test). (C) Same as in A, but for On timescales τon. The On timescale is approximately twice as
long during visual stimulation than during spontaneous activity.
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Fig. S7. Replication of On-Off transitions in laminar recordings from area V4 performed with a differ-
ent type of linear array electrodes, in two different behaving monkeys, and in a different laboratory.
(A) An example recording showing spontaneous On-Off transitions in spiking activity, which occur syn-
chronously across cortical layers while monkey is fixating (cf. Fig. 1e). Multi-unit activity is shown for
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twenty example trials (horizontal bands), with spike times on each of 12 simultaneously recorded channels
indicated by dots in the corresponding row within each band. Activity is aligned to the stimulus’ onset time
(indicated by blue triangles). Time period prior to stimulus onset corresponds to spontaneous activity. Red
triangles indicate onset time of stimulus dimming event. The durations of stimulus and dimming event are
indicated above the plot by blue and red lines, respectively; red dashed line indicates randomized dimming
onset time. On-Off transitions were not locked to these behavioral events. (B) Same as Figs. S2A,C. (C) Same
as Fig. S4A for spontaneous (green dots) and stimulus-driven (orange dots) MUA. (D) Same as Fig. S4B for
spontaneous (green) and stimulus-driven (orange) MUA. (E) Same as Fig. S4C for spontaneous (green) and
stimulus-driven (orange) MUA. (F) Same as Fig. S5A. (G) Same as Fig. S5B. (H) Same as Fig. S5C.
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Fig. S8. On-Off dynamics correlate with pupil size during fixation and attention tasks. (A) Example
traces of pupil size measurements during fixation task in monkey G on trials without visual stimulation (the
same task as in Fig. 1b and the same example session as in Fig. 1c). Light-to-dark color gradient indicates
the average pupil size during 3 seconds of fixation on each example trail. Pupil size is relatively stable over
the 3 s trial duration, but varies substantially on a slower timescale across trials. Red and blue traces indicate
two example trials with relatively large and small pupil size, respectively, which correspond to the example
trials in panels B and C. (B) Average duration of On episodes is greater on the example trial with larger pupil
size than on the example trial with smaller pupil size. Green and pink ticks indicate spikes occurring during
the On and Off episodes, respectively, as decoded by the HMM. (C) Average duration of On episodes is
positively correlated with the average pupil size for the example session from panel a. Each dot in the scatter
plot represents a single fixation trial without visual stimulation, r is the Pearson correlation coefficient. (D)
Across sessions, average duration of On episodes is positively correlated with the average pupil size during
fixation task in monkey G. Pearson correlation coefficient r was calculated separately for each of 4 stimulus
conditions (no visual stimulation and grating stimulus at three contrast levels) in 5 recording sessions during
fixation task, and the histogram shows the distribution across resulting 20 correlation coefficients. Triangle
indicates the median of the distribution; p-value is for Wilcoxon signed rank test. (E) Average duration of
On episodes is positively correlated with the average pupil size during attention task in monkey B. Pearson
correlation coefficient r was calculated during the same time window that was used to fit the HMM (400 ms
after attention cue onset until the end of the attention period), separately for each condition (32 conditions: 8
stimulus orientations times 4 attention conditions) in 8 recording sessions where the pupil size was monitored,
and the histogram shows the distribution of these 256 correlation coefficients. Triangle indicates the median
of the distribution; p-value is for Wilcoxon signed rank test. (F) Scatter plot of the average pupil size in
attention (x-axis; covert - blue circles, overt - orange circles) versus control (y-axis) conditions. Each dot
represents a recording session. The average pupil size was not significantly different between covert attention
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and control conditions (p = 0.55, Wilcoxon signed rank test), and was smaller in overt attention than in
control condition (median difference−10 a.u., p = 0.008, Wilcoxon signed rank test). Therefore, differences
in the pupil size cannot explain the increase of On-episode durations during attention.
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Fig. S9. Control analyses for the observed increase in On-episode durations during attention. (A)
Distribution of the difference in average On-Off transition frequency between covert attention and control
(blue), and overt attention and control (orange) conditions. On-Off transition frequency was significantly
lower in attention conditions than in control conditions. (B-D) Increase in On-episode durations during at-
tention was not an artifact of the increase in mean firing rate. (B) Distribution of the attentional modulation
index ([rA− rC]/[rA + rC]) of the mean firing rate of multi-units by covert (blue) and overt attention (orange).
Trial-average mean firing rate was higher in attention and saccade preparation conditions than in control con-
dition. (C) Same as in B, but after rate matching. Rate-matching procedure equated mean firing rate across
all conditions, largely eliminating the firing-rate modulation by covert and overt attention. (D) Distribution
of the difference (τA − τC) in average duration of the On (right panel) and Off (left panel) episodes between
covert attention and control (blue), and overt attention and control (orange) conditions after rate matching.
The increase in On episode durations is preserved in the rate-matched data, thus this effect was not an arti-
fact of higher mean firing rates during attention conditions. In all panels, triangles indicate medians of the
distributions; p-values are for Wilcoxon signed rank test.
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Fig. S10. Gaussian Process Factor Analysis (GPFA) model of On-Off dynamics. (A) Two example trials
fitted by GPFA and HMM models. Upper panels: the most likely latent trajectory decoded by GPFA (solid
line) and by HMM (dashed line). Lower panels: corresponding spike rasters. Coloring of spike rasters and
of GPFA trajectories is based on the HMM-decoded phase (green and pink: On and Off phase, respectively).
(B) Histogram of GPFA latent phase colored according to the corresponding HMM-decoded phase, for four
example recordings (BC - bimodality coefficient, upper-left histogram corresponds to example recording in
panel A). (C) Upper panel: scatter plot of the variance explained by HMM versus average bimodality coef-
ficient of the GPFA latent-phase (each symbol represents a recording session; red circles and teal diamonds:
2-phase and 1-phase recordings, based on the HMM analysis in Fig. S5). Lower panel: histogram of the
average bimodality coefficient of the GPFA latent phase across recording sessions (red and teal bars: stacked
histograms for 2-phase and 1-phase recordings, respectively, based on the HMM analysis in Fig. S5).
Dashed vertical line indicates the value of BC=1/3 for a unimodal Gaussian distribution. (D) Empirical distri-
butions of On and Off episode durations for four example recordings shown in panel b (same arrangement).
For the GPFA model, the On and Off episodes were determined based on zero-crossings of the latent tra-
jectory. Empirical distributions of episode durations determined by HMM (light green and light pink) and
by GPFA (dark green and dark pink) are overlaid by exponential distributions with the decay time-constants
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calculated from the fitted HMM’s transition probabilities (solid grey line) and from the GPFA’s timescale
parameter (dashed grey line). The distributions of episode durations decoded by HMM and GPFA largely
overlap. GPFA’s timescale parameter is systematically smaller than the average episode durations, indicating
that transition events are faster than average On and Off episode durations. (E) HMM’s timescale parameters
closely match the average HMM-decoded episode durations (upper panels), whereas GPFA’s timescale pa-
rameter is systematically smaller than the average GPFA-decoded episode durations (middle panels). Average
episode durations decoded by HMM and by GPFA were similar (lower panel). Each dot in the scatter plots
represents a recording session. (F) Same as Fig. 3D, but for the On and Off episode durations determined
based on zero-crossings of the GPFA latent trajectory. On episodes determined based on GPFA were signif-
icantly longer in attention conditions than in control conditions, replicating the results of the HMM-based
analysis.
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Fig. S11. Increase of On-episode durations during attention is not due to microsaccades. (A) Distri-
bution of microsaccade amplitudes for monkey B (upper panel) and monkey G (lower panel) in attention
task, during the time period that was used to fit the HMM (400 ms post cue until the end of the attention
period). Triangles indicate the median microsaccade amplitude (12.7 and 14.7 arcmin in monkeys G and
B, respectively). (B) Population-average cross-correlations between the times of microsaccades and times
of Off-to-On (upper panel) and On-to-Off transitions (lower panel); shaded area indicates ±sem. The prob-
ability of Off-to-On transition was significantly enhanced, and the probability of On-to-Off transition was
significantly suppressed∼60 ms after a microsaccade. (C) Example of a microsaccade that occurs during the
Off-phase and is not followed by an Off-to-On transition within the next 30−75 ms (Trial 1, triangle indicates
the time of the microsaccade with the amplitude 10.4 arcmin; red and teal lines show simultaneously recorded
x and y eye position). Example of On-Off transitions observed during a period of highly stable gaze (Trial 2).
Green and pink ticks in the raster plots indicate spikes occurring during the On and Off episodes, respectively,
as decoded by the HMM. The data are from the same example session as in Fig. 1. (D) Histograms across
recordings of the fraction of Off-to-On transitions that were preceded by a microsaccade within a 30− 75 ms
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window (left panel) and of the fraction of microsaccades occurring during the Off-phase that were followed
by an Off-to-On transition within the next 30 − 75 ms (right panel). On average, only 12% of Off-to-On
transitions were preceded by a microsaccade and only 28% of microsaccades were followed by an Off-to-On
transition. (E) Scatter plot of the average microsaccade rate in attention (x-axis; covert - blue symbols, overt
- orange symbols) versus control (y-axis) conditions. Each dot represents a recording session (monkey G -
triangles, monkey B - circles). The average microsaccade rate was not significantly higher during attention
compared to control conditions, except for the covert attention condition in monkey B, where the microsac-
cade rate was significantly higher than in control condition (blue circles, p = 0.002, Wilcoxon signed rank
test). (F) Relative microsaccade frequency between covert attention and control (blue) and overt attention
and control (orange) conditions across microsaccade directions, aligned to the RF location (monkey G - left
panel, monkey B - right panel). The relative frequency is computed for each direction (in 20◦ bins) as the
ratio of the number of microsaccades towards that direction in attention over control condition. Legend:
0◦ corresponds to the RF location (dashed circle), which aligns with the covertly attended stimulus in the
covert condition (blue circle), and is opposite to covertly attended stimulus in the overt condition (orange
circle). There was an overall tendency for microsaccades to be more frequently directed towards the approx-
imate location of the covertly attended stimulus, but microsaccades were more frequently directed towards
the location opposite the covertly attended stimulus in the covert condition for monkey B. Directions with
significantly higher relative microsaccade frequency are highlighted with color-fill (chi-squared residuals test
at 0.05 significance level with Bonferroni correction). (G) Fraction of microsaccades that were followed
by Off-to-On transition across microsaccade directions, aligned to the RF location, during covert (blue) and
overt (orange) conditions. The fraction of microsaccades followed by Off-to-On transitions did not signif-
icantly vary across microsaccade directions (chi-squared test, covert: p = 0.367; overt: p = 0.311). (H)
Analysis of trials without microsaccades: distribution of the difference (τA − τC) in average duration of the
On (right panel) and Off (left panel) episodes between covert attention and control (blue), and overt attention
and control (orange) conditions. On episodes were significantly longer in attention conditions than in control
conditions on trials without microsaccades (cf. Fig. 3D, but note the difference in the range of x-axis).
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Fig. S12. On-Off dynamics explain known features of correlated spike-count variability. (A) Illustration
of how correlated spike-count variability and gain fluctuations arise in the model of On-Off dynamics. Spike
times of two example neurons (red and blue vertical ticks) are generated as inhomogeneous Poisson processes
with different mean rates during the On and Off phases (black lines, four example trials are shown). The On-
Off dynamics are the same for both neurons, but their firing rates during the On and Off phases are different
(roff,1 = 20 Hz, roff,2 = 60 Hz, ron,1 = ron,2 = 100 Hz). Spike-counts N are measured across trials in a
time-window T (200 ms, red shading). For each neuron, the integral of its instantaneous firing rate over
the time-window T determines the rate Λ of the Poisson process on each trial. Since the proportion of On
and Off phases within the time-window T varies from trial-to-trail, Λ fluctuates, which can be described as
fluctuations in the gain G = Λ/E[Λ]. The table shows the values of Λ, G and N for the two example neurons
on each trial. Parameters of the On-Off dynamics are set to their experimentally measured averages: τoff =
100 ms, τon = 150 ms. (B) Variance-to-mean relation of spike-counts predicted by the On-Off model exhibits
signatures of multiplicative noise, which have been observed experimentally and modeled as fluctuations of
a multiplicative gain. Red and blue lines show the analytical prediction from the On-Off model for the two
example neurons from panel A, where the variance and mean are calculated over variable time-windows T
ranging from 1 to 316 ms. Black dashed line shows prediction for a Poisson model. The grey dots show the
analytical prediction of the variance-to-mean relation calculated using T = 200 ms window for a hypothetical
population of 2,000 neurons, where roff is uniformly distributed between 0 and 60 Hz and (ron − roff) is
uniformly distributed between 0 and 100 Hz across the population. The inset shows histogram of the gain
fluctuations for this hypothetical population, summarized as the coefficient of variation of the gain. (C) Spike-
count correlations (noise-correlations) arise in the On-Off model, because pairs of neurons follow the same
sequence of On and Off episodes on each trail. As a result, their rates Λ and spike-counts N are correlated.
Scatter plot shows spike-counts for two example neurons from panel A on 100 trials. Spike-count correlation
predicted analytically from the On-Off model is rsc = 0.43. (D) The On-Off model predicts, that spike-
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count correlation between two neurons decreases as their geometric mean rate increases, when the increase
in mean rate is mainly driven by an increase in roff and ron without change in ∆r. Spike-count correlation is
shown for the two example neurons from panel A across 72 conditions, where mean-rate changes arise from
variation in roff of the two neurons, which is uniformly distributed between 15 and 60 Hz across conditions,
while all other parameters are held constant as in panel A. Red dot corresponds to spike-count correlation
from panel C. (E) The On-Off model predicts, that spike-count correlation between two neurons increases
as their geometric mean rate increases, when the increase in mean rate is mainly driven by an increase in
∆r. Spike-count correlation is shown for two example neurons from panel A across 72 conditions, where
mean-rate changes arise from variation in ∆r of two neurons, which is uniformly distributed between 20 and
90 Hz across conditions, while all other parameters are held constant as in panel A. Red dot corresponds to
spike-count correlation from panel C.
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Fig. S13. On-Off dynamics explain changes in spike-count correlations during attention. (A) Distribu-
tion across all MU-pairs of the difference in spike-count correlations between covert attention and control
(blue), and overt attention and control (orange) conditions. Triangles indicate means of the distributions;
p-values are for permutation test (104 shuffles). (B) Theoretical prediction for spike-count correlation as a
function of the average On-episode duration, when all other model parameters are held constant (solid line).
Off-episode duration is set to its average across sessions τoff = 100 ms (dashed vertical line), roff = 70 Hz,
and ron = 117 Hz. Orange and grey triangles indicate spike-count correlation predicted for attention condi-
tion (τon = 160 ms) and control condition (τon = 150 ms), respectively. (C) Comparison between change in
spike-count correlations predicted by the On-Off model (x-axis) and measured from the data (y-axis) during
covert (circles) and overt (triangles) attention. All pairs are divided in ten equally-sized groups based on
the change in their On-Off firing-rate difference between attention and control conditions (color axis). Inset
shows cumulative distribution of this change in pairs’ On-Off firing-rate difference for covert (blue) and overt
(orange) attention. (D) Same as in panel C, but pairs are divided in ten equally-sized groups based on the dif-
ference in their geometric-mean firing rate between attention and control conditions (color axis). Inset shows
cumulative distribution of this difference in geometric-mean firing rates for covert (blue) and overt (orange)
attention.
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Monkey G G B B
condition covert overt covert overt

∆ On-duration 16 ms 14 ms −0.5 ms 8 ms
attention−control p < 10−3 p < 10−3 p = 0.695 p = 0.002

∆ microsaccade rate 0.01 Hz −0.06 Hz 0.6 Hz −0.005 Hz
attention−control p = 0.97 p = 0.03 p = 0.002 p = 0.275

Supplementary Table 1. Average change of On-episode durations and of microsaccade rate in attention
relative to control conditions, separately for covert and overt attention in each monkey. The microsac-
cade rate was significantly higher for covert attention relative to control condition in monkey B, however, no
increase of On-episode durations was observed in this condition. On the other hand, significant increase of
On-episode durations, but no difference in microsaccade rate was observed in all remaining cases. P-values
are for the Wilcoxon signed rank test.
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